IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v87y2023icp68-78.html
   My bibliography  Save this article

The tail wagging the dog: How do meme stocks affect market efficiency?

Author

Listed:
  • Aloosh, Arash
  • Choi, Hyung-Eun
  • Ouzan, Samuel

Abstract

During the GameStop frenzy, Robinhood Markets Inc. made an unprecedented move by pausing the purchase of meme stocks, which represent a small segment of the market, from January 28th to February 5th, 2021. To evaluate the impact of this ban on market efficiency, we created two meme stock indices based on the lists of restricted stocks and conducted robust tests utilizing daily changes in these indices and the S&P 500 index. Our analysis suggests that meme stock trading does not have a negative impact on market efficiency. Furthermore, upon analyzing hourly data, we identified some puzzling correlations during the trading ban period. Specifically, we noticed that the illiquidity and volatility of both the meme stock market and S&P 500 increased, which raises concerns about a wider, unintended impact of the ban.

Suggested Citation

  • Aloosh, Arash & Choi, Hyung-Eun & Ouzan, Samuel, 2023. "The tail wagging the dog: How do meme stocks affect market efficiency?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 68-78.
  • Handle: RePEc:eee:reveco:v:87:y:2023:i:c:p:68-78
    DOI: 10.1016/j.iref.2023.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056023001351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2023.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wohlgemuth, Veit & Berger, Elisabeth S.C. & Wenzel, Matthias, 2016. "More than just financial performance: Trusting investors in social trading," Journal of Business Research, Elsevier, vol. 69(11), pages 4970-4974.
    2. Hautsch, Nikolaus & Horvath, Akos, 2019. "How effective are trading pauses?," Journal of Financial Economics, Elsevier, vol. 131(2), pages 378-403.
    3. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    4. Paolo Colla & Antonio Mele, 2010. "Information Linkages and Correlated Trading," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 203-246, January.
    5. Han, Bing & Kumar, Alok, 2013. "Speculative Retail Trading and Asset Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(2), pages 377-404, April.
    6. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    7. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    8. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    9. Ozsoylev, Han N. & Walden, Johan, 2011. "Asset pricing in large information networks," Journal of Economic Theory, Elsevier, vol. 146(6), pages 2252-2280.
    10. Sapkota, Niranjan & Grobys, Klaus, 2021. "Asset market equilibria in cryptocurrency markets: Evidence from a study of privacy and non-privacy coins," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    11. Ortmann, Regina & Pelster, Matthias & Wengerek, Sascha Tobias, 2020. "COVID-19 and investor behavior," Finance Research Letters, Elsevier, vol. 37(C).
    12. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    13. Christian Leuz & Steffen Meyer & Maximilian Muhn & Eugene Soltes & Andreas Hackethal, 2017. "Who Falls Prey to the Wolf of Wall Street? Investor Participation in Market Manipulation," NBER Working Papers 24083, National Bureau of Economic Research, Inc.
    14. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    15. Chiah, Mardy & Zhong, Angel, 2020. "Trading from home: The impact of COVID-19 on trading volume around the world," Finance Research Letters, Elsevier, vol. 37(C).
    16. David, Géraldine & Oosterlinck, Kim & Szafarz, Ariane, 2013. "Art market inefficiency," Economics Letters, Elsevier, vol. 121(1), pages 23-25.
    17. Han N. Ozsoylev & Johan Walden & M. Deniz Yavuz & Recep Bildik, 2014. "Investor Networks in the Stock Market," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1323-1366.
    18. Daniel Bradley & Jan Hanousek & Russell Jame & Zicheng Xiao, 2021. "Place your bets? The market consequences of investment advice on Reddit’s Wallstreetbets," MENDELU Working Papers in Business and Economics 2021-76, Mendel University in Brno, Faculty of Business and Economics.
    19. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    20. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    21. Bing Han & Liyan Yang, 2013. "Social Networks, Information Acquisition, and Asset Prices," Management Science, INFORMS, vol. 59(6), pages 1444-1457, June.
    22. Angel Tengulov & Franklin Allen & Eric Nowak & Matteo Pirovano, 2021. "Squeezing Shorts Through Social News Platforms," Swiss Finance Institute Research Paper Series 21-31, Swiss Finance Institute.
    23. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    24. Shleifer, Andrei & Vishny, Robert W, 1997. "The Limits of Arbitrage," Journal of Finance, American Finance Association, vol. 52(1), pages 35-55, March.
    25. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    26. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    27. Assaf, Ata & Kristoufek, Ladislav & Demir, Ender & Kumar Mitra, Subrata, 2021. "Market efficiency in the art markets using a combination of long memory, fractal dimension, and approximate entropy measures," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    28. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    29. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    30. repec:pri:cepsud:91malkiel is not listed on IDEAS
    31. Dinah Rosenberg & Nicolas Vieille, 2019. "On the Efficiency of Social Learning," Econometrica, Econometric Society, vol. 87(6), pages 2141-2168, November.
    32. Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
    33. Pedersen, Lasse Heje, 2022. "Game on: Social networks and markets," Journal of Financial Economics, Elsevier, vol. 146(3), pages 1097-1119.
    34. Simon Board & Moritz Meyer‐ter‐Vehn, 2021. "Learning Dynamics in Social Networks," Econometrica, Econometric Society, vol. 89(6), pages 2601-2635, November.
    35. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    36. Alok Kumar, 2009. "Who Gambles in the Stock Market?," Journal of Finance, American Finance Association, vol. 64(4), pages 1889-1933, August.
    37. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    38. Wei, Wang Chun, 2018. "Liquidity and market efficiency in cryptocurrencies," Economics Letters, Elsevier, vol. 168(C), pages 21-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yanran & Wu, Shan & Xu, Fujia & Jiang, Jie, 2024. "Wisdom of crowds or awkward squad? Social interaction and the information efficiency of the Chinese capital market," Research in International Business and Finance, Elsevier, vol. 71(C).
    2. Lou, Youcheng & Rahi, Rohit, 2023. "Information, market power and welfare," Journal of Economic Theory, Elsevier, vol. 214(C).
    3. Lou, Youcheng & Rahi, Rohit, 2023. "Information, market power and welfare," LSE Research Online Documents on Economics 120479, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    2. Chan, Wesley S. & Frankel, Richard & Kothari, S.P., 2004. "Testing behavioral finance theories using trends and consistency in financial performance," Journal of Accounting and Economics, Elsevier, vol. 38(1), pages 3-50, December.
    3. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
    4. Dionysia Dionysiou, 2015. "Choosing Among Alternative Long-Run Event-Study Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 158-198, February.
    5. Stefanescu, Razvan & Dumitriu, Ramona, 2016. "Particularitǎţi ale evoluţiei variabilelor financiare [Some particularities of the financial variables evolution]," MPRA Paper 73481, University Library of Munich, Germany, revised 02 Sep 2016.
    6. Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.
    7. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    8. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    9. Daniele SCHILIRÒ, 2013. "Bounded Rationality: Psychology, Economics And The Financial Crises," Theoretical and Practical Research in the Economic Fields, ASERS Publishing, vol. 4(1), pages 97-108.
    10. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    11. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    12. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    13. Pasca Lucian, 2015. "A Critical Review of the Main Approaches on Financial Market Dynamics Modelling," Journal of Heterodox Economics, Sciendo, vol. 2(2), pages 151-167, December.
    14. Majumder, Debasish, 2013. "Towards an efficient stock market: Empirical evidence from the Indian market," Journal of Policy Modeling, Elsevier, vol. 35(4), pages 572-587.
    15. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, April.
    16. Ziliotto, Arianna & Serati, Massimiliano, 2015. "The semi-strong efficiency debate: In search of a new testing framework," Research in International Business and Finance, Elsevier, vol. 34(C), pages 412-438.
    17. Brice Corgnet & Cary Deck & Mark DeSantis & David Porter, 2022. "Forecasting Skills in Experimental Markets: Illusion or Reality?," Management Science, INFORMS, vol. 68(7), pages 5216-5232, July.
    18. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    19. Rompotis, Gerasimos G., 2011. "Testing weak-form efficiency of exchange traded funds market," MPRA Paper 36020, University Library of Munich, Germany.
    20. Qianwei Ying & Tahir Yousaf & Qurat ul Ain & Yasmeen Akhtar & Muhammad Shahid Rasheed, 2019. "Stock Investment and Excess Returns: A Critical Review in the Light of the Efficient Market Hypothesis," JRFM, MDPI, vol. 12(2), pages 1-22, June.

    More about this item

    Keywords

    Market efficiency; Illiquidity; Meme stock; GameStop; Social trading; Trading restriction;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:87:y:2023:i:c:p:68-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.