IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v12y2003i1p69-87.html
   My bibliography  Save this article

Risk-adjusted, ex ante, optimal technical trading rules in equity markets

Author

Listed:
  • Neely, Christopher J.

Abstract

Allen and Karjalainen (1999) used genetic programming to develop optimal ex ante trading rules for the S&P 500 index. They found no evidence that the returns to these rules were higher than buy-and-hold returns but some evidence that the rules had predictive ability. This comment investigates the risk-adjusted usefulness of such rules and more fully characterizes their predictive content. These results extend Allen and Karjalainen's (1999) conclusion by showing that although the rules' relative performance improves, there is no evidence that the rules significantly outperform the buy-and-hold strategy on a risk-adjusted basis. Therefore, the results are consistent with market efficiency. Nevertheless, risk-adjustment techniques should be seriously considered when evaluating trading strategies.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Neely, Christopher J., 2003. "Risk-adjusted, ex ante, optimal technical trading rules in equity markets," International Review of Economics & Finance, Elsevier, vol. 12(1), pages 69-87.
  • Handle: RePEc:eee:reveco:v:12:y:2003:i:1:p:69-87
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059-0560(02)00129-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hendrik Bessembinder & Kalok Chan, 1998. "Market Efficiency and the Returns to Technical Analysis," Financial Management, Financial Management Association, vol. 27(2), Summer.
    2. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(04), pages 405-426, December.
    3. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1770, August.
    4. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data-Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    5. William F. Sharpe, 1965. "Mutual Fund Performance," The Journal of Business, University of Chicago Press, vol. 39, pages 119-119.
    6. Gencay, Ramazan, 1998. "The predictability of security returns with simple technical trading rules," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 347-359, October.
    7. Gencay Ramazan & Stengos Thanasis, 1997. "Technical Trading Rules and the Size of the Risk Premium in Security Returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(2), pages 1-14, July.
    8. Mark J Ready, 2002. "Profits from Technical Trading Rules," Financial Management, Financial Management Association, vol. 31(3), Fall.
    9. Neely, Christopher J. & Weller, Paul A., 2001. "Technical analysis and central bank intervention," Journal of International Money and Finance, Elsevier, vol. 20(7), pages 949-970, December.
    10. Neely, Christopher J. & Weller, Paul A., 1999. "Technical trading rules in the European Monetary System," Journal of International Money and Finance, Elsevier, vol. 18(3), pages 429-458.
    11. Gencay, Ramazan, 1998. "Optimization of technical trading strategies and the profitability in security markets," Economics Letters, Elsevier, vol. 59(2), pages 249-254, May.
    12. Bong-Chan, Kho, 1996. "Time-varying risk premia, volatility, and technical trading rule profits: Evidence from foreign currency futures markets," Journal of Financial Economics, Elsevier, vol. 41(2), pages 249-290, June.
    13. Jensen, Michael C., 1978. "Some anomalous evidence regarding market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 95-101.
    14. Sweeney, Richard J., 1988. "Some New Filter Rule Tests: Methods and Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(03), pages 285-300, September.
    15. Cumby, Robert E. & Modest, David M., 1987. "Testing for market timing ability : A framework for forecast evaluation," Journal of Financial Economics, Elsevier, vol. 19(1), pages 169-189, September.
    16. Philippe Jorion & William N. Goetzmann, 1999. "Global Stock Markets in the Twentieth Century," Journal of Finance, American Finance Association, vol. 54(3), pages 953-980, June.
    17. Dowd, Kevin, 2000. "Adjusting for risk:: An improved Sharpe ratio," International Review of Economics & Finance, Elsevier, vol. 9(3), pages 209-222, July.
    18. Stephen J. Brown & William N. Goetzmann & Alok Kumar, 1998. "The Dow Theory: William Peter Hamilton's Track Record Reconsidered," Journal of Finance, American Finance Association, vol. 53(4), pages 1311-1333, August.
    19. Bessembinder, Hendrik & Chan, Kalok, 1995. "The profitability of technical trading rules in the Asian stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 3(2-3), pages 257-284, July.
    20. Dacorogna, Michel M. & Gençay, Ramazan & Müller, Ulrich A. & Pictet, Olivier V., 2001. "Effective return, risk aversion and drawdowns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(1), pages 229-248.
    21. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    22. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. " Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zi-Mei & Chiao, Chaoshin & Chang, Ya-Ting, 2012. "Technical analyses and order submission behaviors: Evidence from an emerging market," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 109-128.
    2. Ülkü, Numan & Prodan, Eugeniu, 2013. "Drivers of technical trend-following rules' profitability in world stock markets," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 214-229.
    3. Christopher J. Neely & Paul A. Weller, 2001. "Predicting exchange rate volatility: genetic programming vs. GARCH and RiskMetrics," Working Papers 2001-009, Federal Reserve Bank of St. Louis.
    4. Scholz, Peter & Walther, Ursula, 2011. "The trend is not your friend! Why empirical timing success is determined by the underlying's price characteristics and market efficiency is irrelevant," CPQF Working Paper Series 29, Frankfurt School of Finance and Management, Centre for Practical Quantitative Finance (CPQF).
    5. repec:eee:quaeco:v:66:y:2017:i:c:p:115-126 is not listed on IDEAS
    6. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    7. GIOT, Pierre & PETITJEAN, Mikael, 2006. "International stock return predictability: statistical evidence and economic significance," CORE Discussion Papers 2006088, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Michael D. McKenzie, 2007. "Technical Trading Rules in Emerging Markets and the 1997 Asian Currency Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 46-73, August.
    9. Cheol-Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    10. Yu, Hao & Nartea, Gilbert V. & Gan, Christopher & Yao, Lee J., 2013. "Predictive ability and profitability of simple technical trading rules: Recent evidence from Southeast Asian stock markets," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 356-371.
    11. Ni, Yensen & Liao, Yi-Ching & Huang, Paoyu, 2015. "MA trading rules, herding behaviors, and stock market overreaction," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 253-265.
    12. Robert Ślepaczuk & Grzegorz Zakrzewski & Paweł Sakowski, 2012. "Investment strategies beating the market. What can we squeeze from the market?," Working Papers 2012-04, Faculty of Economic Sciences, University of Warsaw.
    13. Balvers, Ronald & Wu, Yangru, 2010. "Optimal transaction filters under transitory trading opportunities: Theory and empirical illustration," Journal of Financial Markets, Elsevier, vol. 13(1), pages 129-156, February.
    14. Michael D. McKenzie, 2007. "Technical Trading Rules in Emerging Markets and the 1997 Asian Currency Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 46-73, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:12:y:2003:i:1:p:69-87. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.