IDEAS home Printed from
   My bibliography  Save this paper

The trend is not your friend! Why empirical timing success is determined by the underlying's price characteristics and market efficiency is irrelevant


  • Scholz, Peter
  • Walther, Ursula


The often reported empirical success of trend-following technical timing strategies remains to be puzzling. In previous academic research, many authors admit some prediction power but struggle to substantiate their findings by referring vaguely to insufficient market effciency or unknown hidden patterns in asset price processes. We claim that empirical timing success is possible even in perfectly efficient markets but does not indicate prediction power. We prove this by systematically tracing back timing success to the statistical characteristics of the underlying asset price time series, which is modeled by standard stochastic processes. Five major impact factors are studied: return autocorrelation, trend, volatility and its clustering as well as the degree of market efficiency. We use trading rules based on different intervals of the simple moving average (SMA) as an example. These strategies are applied to simulated asset price data to allow for systematic parameter variations. Subsequently, we test the same strategies on real market data using non-parametric historical simulations and compare the results. Evaluation is done by an extensive selection of statistical-, return-, risk-, and performance figures calculated from the simulated return distributions.

Suggested Citation

  • Scholz, Peter & Walther, Ursula, 2011. "The trend is not your friend! Why empirical timing success is determined by the underlying's price characteristics and market efficiency is irrelevant," CPQF Working Paper Series 29, Frankfurt School of Finance and Management, Centre for Practical Quantitative Finance (CPQF).
  • Handle: RePEc:zbw:cpqfwp:29

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Mark J Ready, 2002. "Profits from Technical Trading Rules," Financial Management, Financial Management Association, vol. 31(3), Fall.
    2. Muhannad A. Atmeh & Ian M. Dobbs, 2006. "Technical analysis and the stochastic properties of the Jordanian stock market index return," Studies in Economics and Finance, Emerald Group Publishing, vol. 23(2), pages 119-140, June.
    3. Annaert, Jan & Osselaer, Sofieke Van & Verstraete, Bert, 2009. "Performance evaluation of portfolio insurance strategies using stochastic dominance criteria," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 272-280, February.
    4. Heidorn, Thomas & Siragusano, Tindaro, 2004. "Die Anwendbarkeit der Behavioral Finance im Devisenmarkt," Frankfurt School - Working Paper Series 52, Frankfurt School of Finance and Management.
    5. Conrad, Jennifer & Kaul, Gautam, 1998. "An Anatomy of Trading Strategies," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 489-519.
    6. Neely, Christopher J., 2003. "Risk-adjusted, ex ante, optimal technical trading rules in equity markets," International Review of Economics & Finance, Elsevier, vol. 12(1), pages 69-87.
    7. Sweeney, Richard J., 1988. "Some New Filter Rule Tests: Methods and Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(03), pages 285-300, September.
    8. Delroy Hunter, 1998. "The performance of filter rules on the Jamaican Stock Exchange," Applied Economics Letters, Taylor & Francis Journals, vol. 5(5), pages 297-300.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Suzanne Fifield & David Power & C. Donald Sinclair, 2005. "An analysis of trading strategies in eleven European stock markets," The European Journal of Finance, Taylor & Francis Journals, vol. 11(6), pages 531-548.
    11. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    12. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. " Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    More about this item


    bootstrapping; market efficiency; market timing; parameterized simulation; performance analysis; return distribution; technical analysis; technical trading;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cpqfwp:29. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.