IDEAS home Printed from https://ideas.repec.org/p/ysm/somwrk/ysm85.html
   My bibliography  Save this paper

The Dow Theory: William Peter Hamilton's Track Record Re-Considered

Author

Listed:
  • Stephen Brown
  • William Goetzmann
  • Alok Kumar

Abstract

Alfred Cowles' (1934) test of the Dow Theory apparently provided strong evidence against the ability of Wall Street's most famous chartist to forecast the stock market. In this paper, we review Cowles' evidence and find that it supports the contrary conclusion -- that the Dow Theory, as applied by its major practitioner, William Peter Hamilton over the period 1902 to 1929, yielde

Suggested Citation

  • Stephen Brown & William Goetzmann & Alok Kumar, 1998. "The Dow Theory: William Peter Hamilton's Track Record Re-Considered," Yale School of Management Working Papers ysm85, Yale School of Management, revised 01 Apr 2008.
  • Handle: RePEc:ysm:somwrk:ysm85
    as

    Download full text from publisher

    File URL: http://icfpub.som.yale.edu/publications/2439
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(04), pages 405-426, December.
    2. repec:fth:pennfi:70 is not listed on IDEAS
    3. Hsieh, David A, 1991. " Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    4. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. " Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    5. Scheinkman, Jose A & LeBaron, Blake, 1989. "Nonlinear Dynamics and Stock Returns," The Journal of Business, University of Chicago Press, vol. 62(3), pages 311-337, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ysm:somwrk:ysm85. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/smyalus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.