IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning

  • Scott C. Linn

    ()

    (Division of Finance, Michael F. Price College of Business, University of Oklahoma, 205 A Adams Hall, Norman, Oklahoma 73019)

  • Nicholas S. P. Tay

    ()

    (School of Business and Management, University of San Francisco, 2130 Fulton Street, Malloy Hall, San Francisco, California 94117-1045)

Empirical evidence on the distributional characteristics of common stock returns indicates: (1) A power-law tail index close to three describes the behavior of the positive tail of the survivor function of returns (pr(r > x) ~ x -\alpha ), a reflection of fat tails; (2) general linear and nonlinear dependencies exist in the time series of returns; (3) the time-series return process is characterized by short-run dependence (short memory) in both returns as well as their volatility, the latter usually characterized in the form of autoregressive conditional heteroskedasticity; and (4) the time-series return process probably does not exhibit long memory, but the squared returns process does exhibit long memory. We propose a model of complex, self-referential learning and reasoning amongst economic agents that jointly produces security returns consistent with these general observed facts and which are supported here by empirical results presented for a benchmark sample of 50 stocks traded on the New York Stock Exchange. The market we postulate is populated by traders who reason inductively while compressing information into a few fuzzy notions that they can in turn process and analyze with fuzzy logic. We analyze the implications of such behavior for the returns on risky securities within the context of an artificial stock market model. Dynamic simulation experiments of the market are conducted, from which market-clearing prices emerge, allowing us to then compute realized returns. We test the effects of varying values of the parameters of the model on the character of the simulated returns. The results indicate that the model proposed in this paper can jointly account for the presence of a power-law characterization of the positive tail of the survivor function of returns with exponent on the order of three, for autoregressive conditional heteroskedasticity, for long memory in volatility, and for general nonlinear dependencies in returns.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://dx.doi.org/10.1287/mnsc.1060.0622
Download Restriction: no

Article provided by INFORMS in its journal Management Science.

Volume (Year): 53 (2007)
Issue (Month): 7 (July)
Pages: 1165-1180

as
in new window

Handle: RePEc:inm:ormnsc:v:53:y:2007:i:7:p:1165-1180
Contact details of provider: Postal:
7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

Phone: +1-443-757-3500
Fax: 443-757-3515
Web page: http://www.informs.org/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  2. Engle III, Robert F., 2003. "Risk and Volatility: Econometric Models and Financial Practice," Nobel Prize in Economics documents 2003-4, Nobel Prize Committee.
  3. Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
  4. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  5. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
  6. Tay, Nicholas S. P. & Linn, Scott C., 2001. "Fuzzy inductive reasoning, expectation formation and the behavior of security prices," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 321-361, March.
  7. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
  8. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
  9. William A. Barnett & A. Ronald Gallant & Melvin J. Hinich & Jochen A. Jungeilges & Daniel T. Kaplan & Mark J. Jensen, 1996. "A Single-Blind Controlled Competition among Tests for Nonlinearity and Chaos," Econometrics 9602005, EconWPA, revised 20 Sep 1996.
  10. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  11. W. Brian Arthur, 1994. "Inductive Reasoning, Bounded Rationality and the Bar Problem," Working Papers 94-03-014, Santa Fe Institute.
  12. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, Oxford University Press, vol. 121(2), pages 461-504.
  13. Scheinkman, Jose A & LeBaron, Blake, 1989. "Nonlinear Dynamics and Stock Returns," The Journal of Business, University of Chicago Press, vol. 62(3), pages 311-37, July.
  14. Arthur, W.B. & LeBaron, B. & Palmer, R., 1997. "Time Series Properties of an Artificial Stock Market," Working papers 9725, Wisconsin Madison - Social Systems.
  15. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
  16. Arthur, W Brian, 1991. "Designing Economic Agents that Act Like Human Agents: A Behavioral Approach to Bounded Rationality," American Economic Review, American Economic Association, vol. 81(2), pages 353-59, May.
  17. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-11, May.
  18. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
  19. Bollerslev, Tim & Wright, Jonathan H., 2000. "Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data," Journal of Econometrics, Elsevier, vol. 98(1), pages 81-106, September.
  20. W. Brian Arthur, 1992. "On Learning and Adaptation in the Economy," Working Papers 854, Queen's University, Department of Economics.
  21. Carmela Quintos & Zhenhong Fan & Peter C. B. Phillips, 2001. "Structural Change Tests in Tail Behaviour and the Asian Crisis," Review of Economic Studies, Oxford University Press, vol. 68(3), pages 633-663.
  22. Tesfatsion, Leigh S., 2002. "Agent-Based Computational Economics: Growing Economies from the Bottom Up," Staff General Research Papers 5075, Iowa State University, Department of Economics.
  23. Hsieh, David A, 1991. " Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-77, December.
  24. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:53:y:2007:i:7:p:1165-1180. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.