IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v31y2009i4p272-286.html
   My bibliography  Save this article

Optimal fishery harvesting rules under uncertainty

Author

Listed:
  • Sarkar, Sudipto

Abstract

This paper derives the optimal fishery harvest policy in a real-option model with a stochastic logistic growth process, harvest-sensitive output price, and both fixed and variable harvesting costs. The policy specifies the harvest trigger and harvest size, while outputs from the model include the value of the fishery and the risk of extinction. The optimal policy is illustrated with data from the Pacific Halibut Fishery. For this particular case, the optimal policy recommends harvesting when the fish stock rises to about three-quarters the environmental carrying capacity, and the amount harvested should be approximately a quarter of the prevailing stock. This harvesting policy maximizes the value of the fishery, and importantly, the resulting risk of extinction is negligible. We also carry out some sensitivity analysis to see how the optimal policy (and the resulting fishery value and risk of extinction) change when the input parameters are varied, particularly the ecological parameters intrinsic growth rate and volatility of the stock, and also the economic parameters that have been ignored in previous papers (price sensitivity and fixed cost). If the optimal policy is followed, the risk of extinction will be negligible, except for very low growth rate and high volatility.

Suggested Citation

  • Sarkar, Sudipto, 2009. "Optimal fishery harvesting rules under uncertainty," Resource and Energy Economics, Elsevier, vol. 31(4), pages 272-286, November.
  • Handle: RePEc:eee:resene:v:31:y:2009:i:4:p:272-286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928-7655(09)00031-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arantza Murillas & José Manuel Chamorro, 2006. "Valuation and Management of Fishing Resources Under Price Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(1), pages 39-71, January.
    2. R. Quentin Grafton & Leif K. Sandal & Stein Ivar Steinshamn, 2000. "How to Improve the Management of Renewable Resources: The Case of Canada's Northern Cod Fishery," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(3), pages 570-580.
    3. Tracy R. Lewis & Richard Schmalensee, 1979. "Non-convexity and Optimal Harvesting Strategies for Renewable Resources," Canadian Journal of Economics, Canadian Economics Association, vol. 12(4), pages 677-691, November.
    4. Singh, Rajesh & Weninger, Quinn & Doyle, Matthew, 2006. "Fisheries management with stock growth uncertainty and costly capital adjustment," Journal of Environmental Economics and Management, Elsevier, vol. 52(2), pages 582-599, September.
    5. Nostbakken, Linda, 2006. "Regime switching in a fishery with stochastic stock and price," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 231-241, March.
    6. Clark, Colin W, 1973. "Profit Maximization and the Extinction of Animal Species," Journal of Political Economy, University of Chicago Press, vol. 81(4), pages 950-961, July-Aug..
    7. Liski, Matti & Kort, Peter M. & Novak, Andreas, 2001. "Increasing returns and cycles in fishing," Resource and Energy Economics, Elsevier, vol. 23(3), pages 241-258, July.
    8. Saphores, Jean-Daniel, 2003. "Harvesting a renewable resource under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 509-529, December.
    9. Rognvaldur Hannesson, 1975. "Fishery Dynamics: A North Atlantic Cod Fishery," Canadian Journal of Economics, Canadian Economics Association, vol. 8(2), pages 151-173, May.
    10. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 9, pages 178-203, Palgrave Macmillan.
    11. Doyle, Matthew & Singh, Rajesh & Weninger, Quinn, 2006. "Fisheries Management with Stock Uncertainty and Costly Capital Adjustment," Staff General Research Papers Archive 12770, Iowa State University, Department of Economics.
    12. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    13. Robert McDonald & Daniel Siegel, 1986. "The Value of Waiting to Invest," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(4), pages 707-727.
    14. Clark, Colin W. & Munro, Gordon R., 1975. "The economics of fishing and modern capital theory: A simplified approach," Journal of Environmental Economics and Management, Elsevier, vol. 2(2), pages 92-106, December.
    15. Tracy R. Lewis, 1981. "Exploitation of a Renewable Resource under Uncertainty," Canadian Journal of Economics, Canadian Economics Association, vol. 14(3), pages 422-439, August.
    16. R. Quentin Grafton & Tom Kompas & Pham Van Ha, 2006. "The Economic Payoffs from Marine Reserves: Resource Rents in a Stochastic Environment," The Economic Record, The Economic Society of Australia, vol. 82(259), pages 469-480, December.
    17. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Journal of Political Economy, University of Chicago Press, vol. 62, pages 124-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenya Liu & Yuhao Mu, 2022. "Optimal Stopping Methods for Investment Decisions: A Literature Review," IJFS, MDPI, vol. 10(4), pages 1-23, October.
    2. Ye Li & Clemens Kool & Peter-Jan Engelen, 2020. "Analyzing the Business Case for Hydrogen-Fuel Infrastructure Investments with Endogenous Demand in The Netherlands: A Real Options Approach," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    3. Poudel, Diwakar & Sandal, Leif K., 2014. "Stochastic Optimization for Multispecies Fisheries in the Barents Sea," Discussion Papers 2014/2, Norwegian School of Economics, Department of Business and Management Science.
    4. Engelen, Peter-Jan & Kool, Clemens & Li, Ye, 2016. "A barrier options approach to modeling project failure: The case of hydrogen fuel infrastructure," Resource and Energy Economics, Elsevier, vol. 43(C), pages 33-56.
    5. Insley, Margaret, 2017. "Resource extraction with a carbon tax and regime switching prices: Exercising your options," Energy Economics, Elsevier, vol. 67(C), pages 1-16.
    6. Jules Selles, 2018. "Fisheries management: what uncertainties matter?," Working Papers hal-01824238, HAL.
    7. Gaston Clément Nyassoke Titi & Jules Sadefo-Kamdem & Louis Aimé Fono, 2020. "Fishery Management in a Regime Switching Environment: Utility Based Approach," Working Papers hal-02433395, HAL.
    8. Poudel, Diwakar & Sandal, Leif K. & Kvamsdal, Sturla F., 2012. "Analyzing Risk of Stock Collapse in a Fishery under Stochastic Profit Maximization," Discussion Papers 2012/4, Norwegian School of Economics, Department of Business and Management Science.
    9. C. E. Dangerfield & A. E. Whalley & N. Hanley & C. A. Gilligan, 2018. "What a Difference a Stochastic Process Makes: Epidemiological-Based Real Options Models of Optimal Treatment of Disease," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 691-711, July.
    10. Y. Li & C.J.M. Kool & P.J. Engelen, 2016. "Hydrogen-Fuel Infrastructure Investment with Endogenous Demand: A Real Options Approach," Working Papers 16-12, Utrecht School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poudel, Diwakar & Sandal, Leif K. & Steinshamn, Stein I. & Kvamsdal, Sturla F., 2012. "Do Species Interactions and Stochasticity Matter to Optimal Management of Multispecies Fisheries?," Discussion Papers 2012/1, Norwegian School of Economics, Department of Business and Management Science.
    2. Poudel, Diwakar & Sandal, Leif K. & Kvamsdal, Sturla F., 2012. "Analyzing Risk of Stock Collapse in a Fishery under Stochastic Profit Maximization," Discussion Papers 2012/4, Norwegian School of Economics, Department of Business and Management Science.
    3. George Halkos & George Papageorgiou, 2013. "Dynamic modeling of pulse fishing: A game theoretic approach," DEOS Working Papers 1324, Athens University of Economics and Business.
    4. Nicolas Sanz & Bassirou Diop, 2022. "Endogenous catch per unit effort and congestion externalities between vessels in a search‐matching model: Evidence from the French Guiana shrimp fishery," Bulletin of Economic Research, Wiley Blackwell, vol. 74(3), pages 838-853, July.
    5. Squires, Dale & Vestergaard, Niels, 2013. "Technical change in fisheries," Marine Policy, Elsevier, vol. 42(C), pages 286-292.
    6. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    7. van Dijk, Diana & Hendrix, Eligius M.T. & Haijema, Rene & Groeneveld, Rolf A. & van Ierland, Ekko C., 2014. "On solving a bi-level stochastic dynamic programming model for analyzing fisheries policies: Fishermen behavior and optimal fish quota," Ecological Modelling, Elsevier, vol. 272(C), pages 68-75.
    8. Gordon Munro & U. Sumaila, 2015. "On the Contributions of Colin Clark to Fisheries Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(1), pages 1-17, May.
    9. Jules Selles, 2018. "Fisheries management: what uncertainties matter?," Working Papers hal-01824238, HAL.
    10. Suphaphiphat, Nujin & Peretto, Pietro F. & Valente, Simone, 2015. "Endogenous growth and property rights over renewable resources," European Economic Review, Elsevier, vol. 76(C), pages 125-151.
    11. Singh, Rajesh & Weninger, Quinn, 2009. "Bioeconomies of scope and the discard problem in multiple-species fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 58(1), pages 72-92, July.
    12. Schnier, Kurt E. & Anderson, Christopher M., 2006. "Decision making in patchy resource environments: Spatial misperception of bioeconomic models," Journal of Economic Behavior & Organization, Elsevier, vol. 61(2), pages 234-254, October.
    13. Ben White, 2000. "A Review of the Economics of Biological Natural Resources," Journal of Agricultural Economics, Wiley Blackwell, vol. 51(3), pages 419-462, September.
    14. Diana Dijk & Eligius M. T. Hendrix & Rene Haijema & Rolf A. Groeneveld & Ekko C. Ierland, 2017. "An Adjustment Restriction on Fish Quota: Resource Rents, Overcapacity and Recovery of Fish Stock," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 203-230, June.
    15. Wilen, James E., 2000. "Renewable Resource Economists and Policy: What Differences Have We Made?," Journal of Environmental Economics and Management, Elsevier, vol. 39(3), pages 306-327, May.
    16. Manuel Coelho & Jose Antonio Filipe & Manuel Alberto M. Ferreira & Rui Junqueira Lopes, 2013. "Extinction Revisited: “Allee Effect” and Irreversibility in “Schooling” Fisheries," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 3(1), pages 405-405.
    17. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    18. Eggert, Håkan, 2006. "Fisheries Economics and 20 years with Marine Resource Economics: A Citation Analysis," Working Papers in Economics 203, University of Gothenburg, Department of Economics.
    19. Alain Jean-Marie & Mabel Tidball & Michel Moreaux & Katrin Erdlenbruch, 2009. "The Renewable Resource Management Nexus: Impulse versus Continuous Harvesting Policies," Working Papers 09-03, LAMETA, Universtiy of Montpellier, revised Mar 2009.
    20. Costello, Christopher & Polasky, Stephen, 2008. "Optimal harvesting of stochastic spatial resources," Journal of Environmental Economics and Management, Elsevier, vol. 56(1), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:31:y:2009:i:4:p:272-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.