IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v57y2016icp1322-1336.html
   My bibliography  Save this article

Power systems without fuel

Author

Listed:
  • Taylor, Josh A.
  • Dhople, Sairaj V.
  • Callaway, Duncan S.

Abstract

The finiteness of fossil fuels implies that future electric power systems may predominantly source energy from fuel-free renewable resources like wind and solar. Evidently, these power systems without fuel will be environmentally benign, sustainable, and subject to milder failure scenarios. Many of these advantages were projected decades ago with the definition of the soft energy path, which describes a future where all energy is provided by numerous small, simple, and diverse renewable sources. Here we provide a thorough investigation of power systems without any fuel-based generation from technical and economic standpoints. The paper is organized by timescale and covers issues like the irrelevance of unit commitment in networks without large, fuel-based generators, the dubiousness of nodal pricing without fuel costs, and the need for new system-level models and control methods for semiconductor-based energy-conversion interfaces.

Suggested Citation

  • Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
  • Handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:1322-1336
    DOI: 10.1016/j.rser.2015.12.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115014665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Xian & Delarue, Erik & D'haeseleer, William & Glachant, Jean-Michel, 2011. "A novel business model for aggregating the values of electricity storage," Energy Policy, Elsevier, vol. 39(3), pages 1575-1585, March.
    2. Reiche, Danyel & Bechberger, Mischa, 2004. "Policy differences in the promotion of renewable energies in the EU member states," Energy Policy, Elsevier, vol. 32(7), pages 843-849, May.
    3. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    4. Strbac, Goran & Kirschen, Daniel S., 2000. "Who Should Pay for Reserve?," The Electricity Journal, Elsevier, vol. 13(8), pages 32-37, October.
    5. Cramton, Peter & Stoft, Steven, 2005. "A Capacity Market that Makes Sense," The Electricity Journal, Elsevier, vol. 18(7), pages 43-54.
    6. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    7. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    8. Green, Richard J & Newbery, David M, 1992. "Competition in the British Electricity Spot Market," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 929-953, October.
    9. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    10. Varian,Hal R. & Farrell,Joseph & Shapiro,Carl, 2004. "The Economics of Information Technology," Cambridge Books, Cambridge University Press, number 9780521605212.
    11. Nelson, D.B. & Nehrir, M.H. & Wang, C., 2006. "Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems," Renewable Energy, Elsevier, vol. 31(10), pages 1641-1656.
    12. Juan M. Morales & Antonio J. Conejo & Henrik Madsen & Pierre Pinson & Marco Zugno, 2014. "Integrating Renewables in Electricity Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-9411-9, December.
    13. Martínez, E. & Sanz, F. & Pellegrini, S. & Jiménez, E. & Blanco, J., 2009. "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 667-673.
    14. Munson, Richard, 2005. "From Edison to Enron," The Electricity Journal, Elsevier, vol. 18(9), pages 51-61, November.
    15. Diaf, S. & Belhamel, M. & Haddadi, M. & Louche, A., 2008. "Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica island," Energy Policy, Elsevier, vol. 36(2), pages 743-754, February.
    16. Tsai, W.T. & Chou, Y.H., 2006. "An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 491-502, October.
    17. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680, Decembrie.
    18. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    19. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    20. DeCarolis, Joseph F. & Keith, David W., 2006. "The economics of large-scale wind power in a carbon constrained world," Energy Policy, Elsevier, vol. 34(4), pages 395-410, March.
    21. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    22. Frederic H. Murphy & Yves Smeers, 2005. "Generation Capacity Expansion in Imperfectly Competitive Restructured Electricity Markets," Operations Research, INFORMS, vol. 53(4), pages 646-661, August.
    23. Klemperer, Paul D & Meyer, Margaret A, 1989. "Supply Function Equilibria in Oligopoly under Uncertainty," Econometrica, Econometric Society, vol. 57(6), pages 1243-1277, November.
    24. Cai, Desmond W.H. & Adlakha, Sachin & Low, Steven H. & De Martini, Paul & Mani Chandy, K., 2013. "Impact of residential PV adoption on Retail Electricity Rates," Energy Policy, Elsevier, vol. 62(C), pages 830-843.
    25. Peter Cramton & Axel Ockenfels & Steven Stoft, 2013. "Capacity Market Fundamentals," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    26. Deane, J.P. & Ó Gallachóir, B.P. & McKeogh, E.J., 2010. "Techno-economic review of existing and new pumped hydro energy storage plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1293-1302, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saavedra, Aldo & Negrete-Pincetic, Matias & Rodríguez, Rafael & Salgado, Marcelo & Lorca, Álvaro, 2022. "Flexible load management using flexibility bands," Applied Energy, Elsevier, vol. 317(C).
    2. Brown, Patrick R. & O'Sullivan, Francis M., 2020. "Spatial and temporal variation in the value of solar power across United States electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. Pierre Pinson, 2023. "What may future electricity markets look like?," Papers 2302.02833, arXiv.org, revised Feb 2023.
    4. Philipp Staudt & Sebastian Lehnhoff & Richard Watson, 2019. "Call for Papers, Issue 3/2021," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 767-769, December.
    5. Mitridati, Lesia & Kazempour, Jalal & Pinson, Pierre, 2020. "Heat and electricity market coordination: A scalable complementarity approach," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1107-1123.
    6. Zhao, Ning & You, Fengqi, 2022. "Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    2. Mohammad Rasouli & Demosthenis Teneketzis, 2021. "Economizing the Uneconomic: Markets for Reliable, Sustainable, and Price Efficient Electricity," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    3. Bajo-Buenestado, Raúl, 2017. "Welfare implications of capacity payments in a price-capped electricity sector: A case study of the Texas market (ERCOT)," Energy Economics, Elsevier, vol. 64(C), pages 272-285.
    4. Nagl, Stephan, 2013. "Prices vs. Quantities: Incentives for Renewable Power Generation - Numerical Analysis for the European Power Market," EWI Working Papers 2013-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    5. Gregor, ZOETTL, 2008. "Investment decisions in liberalized electricity markets : A framework of peak load pricing with strategic firms," Discussion Papers (ECON - Département des Sciences Economiques) 2008029, Université catholique de Louvain, Département des Sciences Economiques.
    6. Kamiński, Jacek, 2012. "The development of market power in the Polish power generation sector: A 10-year perspective," Energy Policy, Elsevier, vol. 42(C), pages 136-147.
    7. Harbord, David & Pagnozzi, Marco, 2014. "Britain's electricity capacity auctions: lessons from Colombia and New England," MPRA Paper 56224, University Library of Munich, Germany.
    8. Gregor Zöttl, 2010. "A Framework of Peak Load Pricing with Strategic Firms," Operations Research, INFORMS, vol. 58(6), pages 1637-1649, December.
    9. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    10. Zöttl, Gregor, 2011. "On optimal scarcity prices," International Journal of Industrial Organization, Elsevier, vol. 29(5), pages 589-605, September.
    11. Dorea Chin & Afzal Siddiqui, 2014. "Capacity expansion and forward contracting in a duopolistic power sector," Computational Management Science, Springer, vol. 11(1), pages 57-86, January.
    12. Sebastian Schwenen, 2015. "Strategic bidding in multi-unit auctions with capacity constrained bidders: the New York capacity market," RAND Journal of Economics, RAND Corporation, vol. 46(4), pages 730-750, October.
    13. Ollikka, Kimmo, 2014. "Essays on auction mechanisms and information in regulating pollution," Research Reports 66, VATT Institute for Economic Research.
    14. Tishler, Asher & Milstein, Irena & Woo, Chi-Keung, 2008. "Capacity commitment and price volatility in a competitive electricity market," Energy Economics, Elsevier, vol. 30(4), pages 1625-1647, July.
    15. Ayzenberg, N. & Kiseleva, N. & Zorkaltsev, V., 2013. "Models of Imperfect Competition in Analysis of Siberian Electricity Market," Journal of the New Economic Association, New Economic Association, vol. 18(2), pages 62-88.
    16. Lade, Gabriel & Lin, C.-Y. Cynthia & Smith, Aaron, 2014. "Policy Uncertainty under Market-Based Regulations: Evidence from the Renewable Fuel Standard," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170673, Agricultural and Applied Economics Association.
    17. Ollikka, Kimmo, 2014. "Essays on auction mechanisms and information in regulating pollution," Research Reports P66, VATT Institute for Economic Research.
    18. Stephanie Rosenkranz & Patrick W. Schmitz, 2007. "Can Coasean Bargaining Justify Pigouvian Taxation?," Economica, London School of Economics and Political Science, vol. 74(296), pages 573-585, November.
    19. Newbery, David M. & Greve, Thomas, 2017. "The strategic robustness of oligopoly electricity market models," Energy Economics, Elsevier, vol. 68(C), pages 124-132.
    20. Moritz Bohland & Sebastian Schwenen, 2020. "Technology Policy and Market Structure: Evidence from the Power Sector," Discussion Papers of DIW Berlin 1856, DIW Berlin, German Institute for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:57:y:2016:i:c:p:1322-1336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.