IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.10092.html
   My bibliography  Save this paper

Price Formation in a Highly-Renewable, Sector-Coupled Energy System

Author

Listed:
  • Julian Geis
  • Fabian Neumann
  • Michael Lindner
  • Philipp Hartel
  • Tom Brown

Abstract

As variable renewable energy increases and more demand is electrified, we expect price formation in wholesale electricity markets to transition from being dominated by fossil fuel generators to being dominated by the opportunity costs of storage and demand management. In order to analyse this transition, we introduce a new method to investigate price formation based on a mapping from the dual variables of the energy system optimisation problem to the bids and asks of electricity suppliers and consumers. This allows us to build the full supply and demand curves in each hour. We use this method to analyse price formation in a sector-coupled, climate-neutral energy system model for Germany, PyPSA-DE, with high temporal resolution and myopic foresight in 5-year steps from 2020 until full decarbonisation in 2045. We find a clear transition from distinct price levels, corresponding to fossil fuels, to a smoother price curve set by variable renewable energy sources, batteries and electrolysis. Despite higher price volatility, the fully decarbonised system clears with non-zero prices in 75% of all hours. Our results suggest that flexibility and cross-sectoral demand bidding play a vital role in stabilising electricity prices in a climate-neutral future. These findings are highly relevant for guiding investment decisions and informing policy, particularly in support of dynamic pricing, the expansion of energy storage across multiple timescales, and the coordinated development of renewable and flexibility technologies.

Suggested Citation

  • Julian Geis & Fabian Neumann & Michael Lindner & Philipp Hartel & Tom Brown, 2025. "Price Formation in a Highly-Renewable, Sector-Coupled Energy System," Papers 2509.10092, arXiv.org.
  • Handle: RePEc:arx:papers:2509.10092
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.10092
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirth, Lion & Khanna, Tarun M. & Ruhnau, Oliver, 2024. "How aggregate electricity demand responds to hourly wholesale price fluctuations," Energy Economics, Elsevier, vol. 135(C).
    2. Eike Blume-Werry, Thomas Faber, Lion Hirth, Claus Huber, and Martin Everts, 2021. "Eyes on the Price: Which Power Generation Technologies Set the Market Price?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    3. Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).
    4. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    5. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data. Part I: Model structure and validation," Working Papers "Sustainability and Innovation" S4/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    6. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    7. Tom Brown & Fabian Neumann & Iegor Riepin, 2024. "Price formation without fuel costs: the interaction of demand elasticity with storage bidding," Papers 2407.21409, arXiv.org, revised Feb 2025.
    8. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    9. Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2022. "Cannibalization, depredation, and market remuneration of power plants," Energy Policy, Elsevier, vol. 167(C).
    10. Hirth, Lion & Khanna, Tarun M. & Ruhnau, Oliver, 2024. "How aggregate electricity demand responds to hourly wholesale price fluctuations," Energy Economics, Elsevier, vol. 135(C).
    11. Brown, Tom & Neumann, Fabian & Riepin, Iegor, 2025. "Price formation without fuel costs: The interaction of demand elasticity with storage bidding," Energy Economics, Elsevier, vol. 147(C).
    12. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data — Part I: Model structure and validation," Ecological Economics, Elsevier, vol. 107(C), pages 411-421.
    13. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data: German market and policy options," Working Papers "Sustainability and Innovation" S12/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    14. Mallapragada, Dharik S. & Junge, Cristian & Wang, Cathy & Pfeifenberger, Hannes & Joskow, Paul L. & Schmalensee, Richard, 2023. "Electricity pricing challenges in future renewables-dominant power systems," Energy Economics, Elsevier, vol. 126(C).
    15. Egli, Florian, 2020. "Renewable energy investment risk: An investigation of changes over time and the underlying drivers," Energy Policy, Elsevier, vol. 140(C).
    16. T. Brown & L. Reichenberg, 2020. "Decreasing market value of variable renewables can be avoided by policy action," Papers 2002.05209, arXiv.org, revised May 2021.
    17. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
    18. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    19. Das, Saptarshi & Hittinger, Eric & Williams, Eric, 2020. "Learning is not enough: Diminishing marginal revenues and increasing abatement costs of wind and solar," Renewable Energy, Elsevier, vol. 156(C), pages 634-644.
    20. McElroy, Michael B. & Chen, Xinyu & Deng, Yawen, 2018. "The missing money problem: Incorporation of increased resources from wind in a representative US power market," Renewable Energy, Elsevier, vol. 126(C), pages 126-136.
    21. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    22. Reichenberg, L. & Ekholm, T. & Boomsma, T., 2023. "Revenue and risk of variable renewable electricity investment: The cannibalization effect under high market penetration," Energy, Elsevier, vol. 284(C).
    23. Antweiler, Werner & Muesgens, Felix, 2025. "The new merit order: The viability of energy-only electricity markets with only intermittent renewable energy sources and grid-scale storage," Energy Economics, Elsevier, vol. 145(C).
    24. Fabian Arnold, 2023. "On the functional form of short-term electricity demand response – insights from high-price years in Germany," EWI Working Papers 2023-6, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Odenweller & Falko Ueckerdt & Johannes Hampp & Ivan Ramirez & Felix Schreyer & Robin Hasse & Jarusch Muessel & Chen Chris Gong & Robert Pietzcker & Tom Brown & Gunnar Luderer, 2025. "REMIND-PyPSA-Eur: Integrating power system flexibility into sector-coupled energy transition pathways," Papers 2510.04388, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abuzayed, A., 2025. "From Model Optimality to Market Reality: Do Electricity Markets Support Renewable Investments?," Cambridge Working Papers in Economics 2558, Faculty of Economics, University of Cambridge.
    2. Anas Abuzayed, 2025. "From model optimality to market reality: do electricity markets support renewable investments?," Working Papers EPRG2521, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Tom Brown & Fabian Neumann & Iegor Riepin, 2024. "Price formation without fuel costs: the interaction of demand elasticity with storage bidding," Papers 2407.21409, arXiv.org, revised Feb 2025.
    4. Soysal, Emilie Rosenlund, 2025. "Market-based wind power investments under financial frictions," Applied Energy, Elsevier, vol. 391(C).
    5. Glenk, Gunther & Reichelstein, Stefan, 2021. "Intermittent versus dispatchable power sources: An integrated competitive assessment," ZEW Discussion Papers 21-065, ZEW - Leibniz Centre for European Economic Research.
    6. Johanndeiter, Silke & Bertsch, Valentin, 2024. "Bidding zero? An analysis of solar power plants’ price bids in the electricity day-ahead market," Applied Energy, Elsevier, vol. 371(C).
    7. Böttger, Diana & Härtel, Philipp, 2022. "On wholesale electricity prices and market values in a carbon-neutral energy system," Energy Economics, Elsevier, vol. 106(C).
    8. Glenk, Gunther & Reichelstein, Stefan, 2022. "The economic dynamics of competing power generation sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Diana Bottger & Philipp Hartel, 2021. "On Wholesale Electricity Prices and Market Values in a Carbon-Neutral Energy System," Papers 2105.01127, arXiv.org.
    10. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    11. Finke, Jonas & Bertsch, Valentin & Di Cosmo, Valeria, 2023. "Exploring the feasibility of Europe’s renewable expansion plans based on their profitability in the market," Energy Policy, Elsevier, vol. 177(C).
    12. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    13. Daniel Navia Simon & Laura Diaz Anadon, 2025. "Power price stability and the insurance value of renewable technologies," Nature Energy, Nature, vol. 10(3), pages 329-341, March.
    14. Jåstad, Eirik Ogner & Trotter, Ian M. & Bolkesjø, Torjus Folsland, 2022. "Long term power prices and renewable energy market values in Norway – A probabilistic approach," Energy Economics, Elsevier, vol. 112(C).
    15. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    16. Van, Tien Linh Cao & Barthelmes, Lukas & Gnann, Till & Speth, Daniel & Kagerbauer, Martin, 2021. "Addressing the gaps in market diffusion modeling of electrical vehicles: A case study from Germany for the integration of environmental policy measures," Working Papers "Sustainability and Innovation" S05/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    17. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    18. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    19. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    20. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.10092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.