IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.05209.html
   My bibliography  Save this paper

Decreasing market value of variable renewables can be avoided by policy action

Author

Listed:
  • T. Brown
  • L. Reichenberg

Abstract

Although recent studies have shown that electricity systems with shares of wind and solar above 80% can be affordable, economists have raised concerns about market integration. Correlated generation from variable renewable sources depresses market prices, which can cause wind and solar to cannibalise their own revenues and prevent them from covering their costs from the market. This cannibalisation appears to set limits on the integration of wind and solar, and thus to contradict studies that show that high shares are cost effective. Here we show from theory and with simulation examples how market incentives interact with prices, revenue and costs for renewable electricity systems. The decline in average revenue seen in some recent literature is due to an implicit policy assumption that technologies are forced into the system, whether it be with subsidies or quotas. This decline is mathematically guaranteed regardless of whether the subsidised technology is variable or not. If instead the driving policy is a carbon dioxide cap or tax, wind and solar shares can rise without cannibalising their own market revenue, even at penetrations of wind and solar above 80%. The strong dependence of market value on the policy regime means that market value needs to be used with caution as a measure of market integration. Declining market value is not necessarily a sign of integration problems, but rather a result of policy choices.

Suggested Citation

  • T. Brown & L. Reichenberg, 2020. "Decreasing market value of variable renewables can be avoided by policy action," Papers 2002.05209, arXiv.org, revised May 2021.
  • Handle: RePEc:arx:papers:2002.05209
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.05209
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jåstad, Eirik Ogner & Trotter, Ian M. & Bolkesjø, Torjus Folsland, 2022. "Long term power prices and renewable energy market values in Norway – A probabilistic approach," Energy Economics, Elsevier, vol. 112(C).
    2. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
    3. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    4. Martin Kittel & Wolf-Peter Schill, 2021. "Renewable Energy Targets and Unintended Storage Cycling: Implications for Energy Modeling," Papers 2107.13380, arXiv.org, revised Sep 2021.
    5. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    6. Glenk, Gunther & Reichelstein, Stefan, 2021. "Intermittent versus dispatchable power sources: An integrated competitive assessment," ZEW Discussion Papers 21-065, ZEW - Leibniz Centre for European Economic Research.
    7. Wehrle, Sebastian & Gruber, Katharina & Schmidt, Johannes, 2021. "The cost of undisturbed landscapes," Energy Policy, Elsevier, vol. 159(C).
    8. Blanquiceth, J. & Cardemil, J.M. & Henríquez, M. & Escobar, R., 2023. "Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    9. Diana Bottger & Philipp Hartel, 2021. "On Wholesale Electricity Prices and Market Values in a Carbon-Neutral Energy System," Papers 2105.01127, arXiv.org.
    10. Böttger, Diana & Härtel, Philipp, 2022. "On wholesale electricity prices and market values in a carbon-neutral energy system," Energy Economics, Elsevier, vol. 106(C).
    11. Liebensteiner, Mario & Naumann, Fabian, 2022. "Can carbon pricing counteract renewable energies’ cannibalization problem?," Energy Economics, Elsevier, vol. 115(C).
    12. Justus Haucap & Jürgen Kühling & Munib Amin & Gert Brunekreeft & Dörte Fouquet & Veronika Grimm & Jörg Gundel & Martin Kment & Wolfgang Ketter & Jochen Kreusel & Charlotte Kreuter-Kirchhof & Mario Lie, 2022. "Erneuerbare Energien effizient und wirksam fördern [Promote Renewable Energies Efficiently and Effectively]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(9), pages 694-702, September.
    13. Finke, Jonas & Bertsch, Valentin & Di Cosmo, Valeria, 2023. "Exploring the feasibility of Europe’s renewable expansion plans based on their profitability in the market," Energy Policy, Elsevier, vol. 177(C).
    14. Glenk, Gunther & Reichelstein, Stefan, 2022. "The economic dynamics of competing power generation sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2023. "The economics of public transport electrification: A case study from Victoria, Australia," Energy Economics, Elsevier, vol. 120(C).
    16. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    17. Mowers, Matthew & Mignone, Bryan K. & Steinberg, Daniel C., 2023. "Quantifying value and representing competitiveness of electricity system technologies in economic models," Applied Energy, Elsevier, vol. 329(C).
    18. Justyna Godawska & Joanna Wyrobek, 2021. "The Impact of Environmental Policy Stringency on Renewable Energy Production in the Visegrad Group Countries," Energies, MDPI, vol. 14(19), pages 1-23, September.
    19. Prokhorov, Oleksandr & Dreisbach, Dina, 2022. "The impact of renewables on the incidents of negative prices in the energy spot markets," Energy Policy, Elsevier, vol. 167(C).
    20. Ruhnau, Oliver, 2020. "Market-based renewables: How flexible hydrogen electrolyzers stabilize wind and solar market values," EconStor Preprints 227075, ZBW - Leibniz Information Centre for Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McConnell, Dylan & Hearps, Patrick & Eales, Dominic & Sandiford, Mike & Dunn, Rebecca & Wright, Matthew & Bateman, Lachlan, 2013. "Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 58(C), pages 17-27.
    2. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    3. Olukunle O. Owolabi & Kathryn Lawson & Sanhita Sengupta & Yingsi Huang & Lan Wang & Chaopeng Shen & Mila Getmansky Sherman & Deborah A. Sunter, 2022. "A Robust Statistical Analysis of the Role of Hydropower on the System Electricity Price and Price Volatility," Papers 2203.02089, arXiv.org.
    4. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    5. Oosthuizen, Anna Maria & Inglesi-Lotz, Roula & Thopil, George Alex, 2022. "The relationship between renewable energy and retail electricity prices: Panel evidence from OECD countries," Energy, Elsevier, vol. 238(PB).
    6. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    7. Simshauser, P., 2019. "On the impact of government-initiated CfD’s in Australia’s National Electricity Market," Cambridge Working Papers in Economics 1901, Faculty of Economics, University of Cambridge.
    8. Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
    9. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    10. Nicolosi, Marco, 2011. "The impact of RES-E policy setting on integration effects - A detailed analysis of capacity expansion and dispatch results," MPRA Paper 31835, University Library of Munich, Germany.
    11. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Agent-based models and economic policy," Sciences Po publications info:hdl:2441/53r60a8s3ku, Sciences Po.
    12. repec:dui:wpaper:1504 is not listed on IDEAS
    13. Verdolini, Elena & Vona, Francesco & Popp, David, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," Energy Policy, Elsevier, vol. 116(C), pages 242-256.
    14. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.
    15. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    16. Ortega, Margarita & del Río, Pablo & Montero, Eduardo A., 2013. "Assessing the benefits and costs of renewable electricity. The Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 294-304.
    17. William Paul Bell & John Foster, 2017. "Using solar PV feed-in tariff policy history to inform a sustainable flexible pricing regime to enhance the diffusion of energy storage and electric vehicles," Journal of Bioeconomics, Springer, vol. 19(1), pages 127-145, April.
    18. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2017. "Has renewable energy induced competitive behavior in the Spanish electricity market?," Energy Policy, Elsevier, vol. 104(C), pages 171-182.
    19. Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
    20. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    21. Lehr, Ulrike & Lutz, Christian & Edler, Dietmar, 2012. "Green jobs? Economic impacts of renewable energy in Germany," Energy Policy, Elsevier, vol. 47(C), pages 358-364.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.05209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.