IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Sustainability and biophysics basis of technical and economic processes: A survey of the reconciliation by thermodynamics

Listed author(s):
  • Teles dos Santos, Moisés
  • Park, Song Won
Registered author(s):

    In spite of the existence of a generalized debate about sustainable development, the natural constraints imposed by the irreversibility nature of technical and economic transformations are normally less discussed. The Second Law of thermodynamics (Entropy Law) reveals the unidirectional and irreversible aspect of such transformations, and it can be used as an auxiliary tool to deal with sustainability assessment. The exergy, a concept derived from entropy, can offer qualitative measurements of resources depletion and environmental impact not covered by mass or energy. This opens opportunities to enrich the sustainability discussion. The multiple interactions among the ecosystem, the economic environment and the technical level are highlighted, along with discussions about how the entropy concept has improved the description of the three levels. The aim of this paper is to review the environmental sustainability concept from the perspective of entropy law, offering a survey of relevant applications of exergy available in literature.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Renewable and Sustainable Energy Reviews.

    Volume (Year): 23 (2013)
    Issue (Month): C ()
    Pages: 261-271

    in new window

    Handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:261-271
    DOI: 10.1016/j.rser.2013.03.006
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Pellegrini, Luiz Felipe & de Oliveira, Silvio, 2007. "Exergy analysis of sugarcane bagasse gasification," Energy, Elsevier, vol. 32(4), pages 314-327.
    2. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
    3. Ayres, Robert U. & Ayres, Leslie W. & Martinás, Katalin, 1998. "Exergy, waste accounting, and life-cycle analysis," Energy, Elsevier, vol. 23(5), pages 355-363.
    4. Warr, Benjamin & Schandl, Heinz & Ayres, Robert U., 2008. "Long term trends in resource exergy consumption and useful work supplies in the UK, 1900 to 2000," Ecological Economics, Elsevier, vol. 68(1-2), pages 126-140, December.
    5. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    6. Szargut, Jan & Stanek, Wojciech, 2008. "Influence of the pro-ecological tax on the market prices of fuels and electricity," Energy, Elsevier, vol. 33(2), pages 137-143.
    7. Ayres, Robert U & Ayres, Leslie W & Warr, Benjamin, 2003. "Exergy, power and work in the US economy, 1900–1998," Energy, Elsevier, vol. 28(3), pages 219-273.
    8. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    9. Ness, Barry & Urbel-Piirsalu, Evelin & Anderberg, Stefan & Olsson, Lennart, 2007. "Categorising tools for sustainability assessment," Ecological Economics, Elsevier, vol. 60(3), pages 498-508, January.
    10. Rivero, R. & Garfias, M., 2006. "Standard chemical exergy of elements updated," Energy, Elsevier, vol. 31(15), pages 3310-3326.
    11. Pellegrini, Luiz Felipe & de Oliveira Júnior, Silvio & Burbano, Juan Carlos, 2010. "Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills," Energy, Elsevier, vol. 35(2), pages 1172-1180.
    12. Dosi, Giovanni, 1988. "Sources, Procedures, and Microeconomic Effects of Innovation," Journal of Economic Literature, American Economic Association, vol. 26(3), pages 1120-1171, September.
    13. Serra, Luis M. & Lozano, Miguel-Angel & Ramos, Jose & Ensinas, Adriano V. & Nebra, Silvia A., 2009. "Polygeneration and efficient use of natural resources," Energy, Elsevier, vol. 34(5), pages 575-586.
    14. Kondo, Kumiko, 2009. "Energy and exergy utilization efficiencies in the Japanese residential/commercial sectors," Energy Policy, Elsevier, vol. 37(9), pages 3475-3483, September.
    15. Dincer, Ibrahim & Rosen, Marc A., 2005. "Thermodynamic aspects of renewables and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 169-189, April.
    16. Milia, Daniela & Sciubba, Enrico, 2006. "Exergy-based lumped simulation of complex systems: An interactive analysis tool," Energy, Elsevier, vol. 31(1), pages 100-111.
    17. Ghannadzadeh, Ali & Thery-Hetreux, Raphaële & Baudouin, Olivier & Baudet, Philippe & Floquet, Pascal & Joulia, Xavier, 2012. "General methodology for exergy balance in ProSimPlus® process simulator," Energy, Elsevier, vol. 44(1), pages 38-59.
    18. Velásquez-Arredondo, H.I. & De Oliveira Junior, S. & Benjumea, P., 2012. "Exergy efficiency analysis of chemical and biochemical stages involved in liquid biofuels production processes," Energy, Elsevier, vol. 41(1), pages 138-145.
    19. Szargut, Jan, 1980. "International progress in second law analysis," Energy, Elsevier, vol. 5(8), pages 709-718.
    20. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    21. Araújo, Antonio B. & Brito, Romildo P. & Vasconcelos, Luís S., 2007. "Exergetic analysis of distillation processes—A case study," Energy, Elsevier, vol. 32(7), pages 1185-1193.
    22. Ayres, Robert U., 1999. "The second law, the fourth law, recycling and limits to growth," Ecological Economics, Elsevier, vol. 29(3), pages 473-483, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:261-271. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.