IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v188y2023ics1364032123006378.html
   My bibliography  Save this article

Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China

Author

Listed:
  • Ma, Xinwei
  • Zhang, Shuai
  • Wu, Tao
  • Yang, Yizhe
  • Yu, Jiajie

Abstract

Bike-sharing systems are promoted worldwide due to their low carbon environmental and social benefits. However, the substitution relationship between dockless and docked bike-sharing systems is barely studied. This paper uses an online survey in Nanjing, China to reveal the factors influencing the substitution relationship between dockless and docked bike-sharing systems using a hybrid choice model. Results show that male prefer to substitute dockless bike-sharing with docked bike-sharing. It is more likely that dockless bike-sharing provides substitution services for docked bike-sharing in the scenario of transferring with bus/subway. Satisfaction to service quality of both bike-sharing systems influence the substitution relationship between the two bike-sharing systems. This paper offers policy implications to improve service level and promote coordinated services of the two bike-sharing systems.

Suggested Citation

  • Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006378
    DOI: 10.1016/j.rser.2023.113780
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123006378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teixeira, João Filipe & Silva, Cecília & Moura e Sá, Frederico, 2022. "The strengths and weaknesses of bike sharing as an alternative mode during disruptive public health crisis: A qualitative analysis on the users’ motivations during COVID-19," Transport Policy, Elsevier, vol. 129(C), pages 24-37.
    2. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    3. Yang, J. & Chen, F., 2021. "How are social-psychological factors related to consumer preferences for plug-in electric vehicles? Case studies from two cities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Szeto, W.Y. & Shui, C.S., 2018. "Exact loading and unloading strategies for the static multi-vehicle bike repositioning problem," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 176-211.
    5. Xinyi Xie & Mingyang Du & Xuefeng Li & Yunjian Jiang, 2023. "Exploring Influential Factors of Free-Floating Bike-Sharing Usage Frequency before and after COVID-19," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    6. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    7. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    8. Zhang, Liye & Xiao, Zhe & Ren, Shen & Qin, Zheng & Goh, Rick Siow Mong & Song, Jie, 2022. "Measuring the vulnerability of bike-sharing system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 353-369.
    9. Song, Jie & Zhang, Liye & Qin, Zheng & Ramli, Muhamad Azfar, 2022. "Spatiotemporal evolving patterns of bike-share mobility networks and their associations with land-use conditions before and after the COVID-19 outbreak," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    10. Lazarus, Jessica & Pourquier, Jean Carpentier & Feng, Frank & Hammel, Henry & Shaheen, Susan, 2020. "Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt96g9c9nd, Institute of Transportation Studies, UC Berkeley.
    11. Yang, Liya & Shen, Qing & Li, Zhibin, 2016. "Comparing travel mode and trip chain choices between holidays and weekdays," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 273-285.
    12. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    13. Daniel McFadden, 1986. "The Choice Theory Approach to Market Research," Marketing Science, INFORMS, vol. 5(4), pages 275-297.
    14. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    15. Xiaojia Guo & Chengpeng Lu & Dongqi Sun & Yexin Gao & Bing Xue, 2021. "Comparison of Usage and Influencing Factors between Governmental Public Bicycles and Dockless Bicycles in Linfen City, China," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    16. Márquez, Luis & Soto, Jose J., 2021. "Integrating perceptions of safety and bicycle theft risk in the analysis of cycling infrastructure preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 285-301.
    17. Younes, Hannah & Zou, Zhenpeng & Wu, Jiahui & Baiocchi, Giovanni, 2020. "Comparing the Temporal Determinants of Dockless Scooter-share and Station-based Bike-share in Washington, D.C," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 308-320.
    18. Shaheen, Susan PhD & Cohen, Adam & Martin, Elliot PhD, 2013. "Public Bikesharing in North America: Early Operator Understanding and Emerging Trends," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1x26m6z7, Institute of Transportation Studies, UC Berkeley.
    19. Motoaki, Yutaka & Daziano, Ricardo A., 2015. "A hybrid-choice latent-class model for the analysis of the effects of weather on cycling demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 217-230.
    20. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    21. Li, Haojie & Zhang, Yingheng & Ding, Hongliang & Ren, Gang, 2019. "Effects of dockless bike-sharing systems on the usage of the London Cycle Hire," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 398-411.
    22. Corcoran, Jonathan & Li, Tiebei & Rohde, David & Charles-Edwards, Elin & Mateo-Babiano, Derlie, 2014. "Spatio-temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 292-305.
    23. Xuefeng Li & Yong Zhang & Li Sun & Qiyang Liu, 2018. "Free-Floating Bike Sharing in Jiangsu: Users’ Behaviors and Influencing Factors," Energies, MDPI, vol. 11(7), pages 1-18, June.
    24. Astrid De Witte & Joachim Hollevoet & Frédéric Dobruszkes & Michel Hubert & Cathy Macharis, 2013. "Linking modal choice to motility: a comprehensive review," ULB Institutional Repository 2013/138176, ULB -- Universite Libre de Bruxelles.
    25. Rafael Maldonado-Hinarejos & Aruna Sivakumar & John Polak, 2014. "Exploring the role of individual attitudes and perceptions in predicting the demand for cycling: a hybrid choice modelling approach," Transportation, Springer, vol. 41(6), pages 1287-1304, November.
    26. Bergantino, Angela Stefania & Intini, Mario & Tangari, Luca, 2021. "Influencing factors for potential bike-sharing users: an empirical analysis during the COVID-19 pandemic," Research in Transportation Economics, Elsevier, vol. 86(C).
    27. Luis Márquez & Víctor Cantillo & Julián Arellana, 2020. "Assessing the influence of indicators’ complexity on hybrid discrete choice model estimates," Transportation, Springer, vol. 47(1), pages 373-396, February.
    28. Cheng, Long & Yang, Junjian & Chen, Xuewu & Cao, Mengqiu & Zhou, Hang & Sun, Yu, 2020. "How could the station-based bike sharing system and the free-floating bike sharing system be coordinated?," Journal of Transport Geography, Elsevier, vol. 89(C).
    29. Kim, Jinhee & Rasouli, Soora & Timmermans, Harry, 2017. "Satisfaction and uncertainty in car-sharing decisions: An integration of hybrid choice and random regret-based models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 13-33.
    30. Dea van Lierop & Madhav G. Badami & Ahmed M. El-Geneidy, 2018. "What influences satisfaction and loyalty in public transport? A review of the literature," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 52-72, January.
    31. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    32. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    33. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    34. Çelebi, Dilay & Yörüsün, Aslı & Işık, Hanife, 2018. "Bicycle sharing system design with capacity allocations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 86-98.
    35. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    36. Meng, Si'an & Brown, Anne, 2021. "Docked vs. dockless equity: Comparing three micromobility service geographies," Journal of Transport Geography, Elsevier, vol. 96(C).
    37. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
    38. Hu, Songhua & Xiong, Chenfeng & Liu, Zhanqin & Zhang, Lei, 2021. "Examining spatiotemporal changing patterns of bike-sharing usage during COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 91(C).
    39. Yáñez, M.F. & Raveau, S. & Ortúzar, J. de D., 2010. "Inclusion of latent variables in Mixed Logit models: Modelling and forecasting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 744-753, November.
    40. Jung, Se-Yeon & Yoo, Kwang-Eui, 2016. "A study on passengers' airport choice behavior using hybrid choice model: A case study of Seoul metropolitan area, South Korea," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 70-79.
    41. Zheyan Chen & Dea van Lierop & Dick Ettema, 2020. "Dockless bike-sharing systems: what are the implications?," Transport Reviews, Taylor & Francis Journals, vol. 40(3), pages 333-353, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    2. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    3. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    4. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    5. Cheng, Long & Yang, Junjian & Chen, Xuewu & Cao, Mengqiu & Zhou, Hang & Sun, Yu, 2020. "How could the station-based bike sharing system and the free-floating bike sharing system be coordinated?," Journal of Transport Geography, Elsevier, vol. 89(C).
    6. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    7. Meng, Si'an & Brown, Anne, 2021. "Docked vs. dockless equity: Comparing three micromobility service geographies," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Xinwei Ma & Ruiming Cao & Jianbiao Wang, 2019. "Effects of Psychological Factors on Modal Shift from Car to Dockless Bike Sharing: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 16(18), pages 1-16, September.
    9. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    10. Jinyi Zhou & Changyuan Jing & Xiangjun Hong & Tian Wu, 2019. "Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    11. Fabio Kon & Éderson Cássio Ferreira & Higor Amario Souza & Fábio Duarte & Paolo Santi & Carlo Ratti, 2022. "Abstracting mobility flows from bike-sharing systems," Public Transport, Springer, vol. 14(3), pages 545-581, October.
    12. Haotian Ma & Xinlu Chen & Zhilei Zhen & Qian Wang, 2023. "Bicycle-sharing in Beijing: An Assessment of Economic, Environmental, and Health Effects, and Identification of Key Drivers of Environmental Performance," Networks and Spatial Economics, Springer, vol. 23(1), pages 285-316, March.
    13. Yixiao Liu & Wenshan Liu & Rui Zhao & Lixin Tian, 2023. "Can Docked Bike-Sharing Systems Reach Their Dual Sustainability in Terms of Environmental Benefits and Financial Operations? A Comparative Study from Nanjing, 2017 and 2023," Sustainability, MDPI, vol. 15(24), pages 1-39, December.
    14. Link, Christoph & Strasser, Christoph & Hinterreiter, Michael, 2020. "Free-floating bikesharing in Vienna – A user behaviour analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 168-182.
    15. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    16. Zhang, Ziru & Krishnakumari, Panchamy & Schulte, Frederik & van Oort, Niels, 2023. "Improving the service of E-bike sharing by demand pattern analysis: A data-driven approach," Research in Transportation Economics, Elsevier, vol. 101(C).
    17. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    18. Gao, Kun & Yang, Ying & Li, Aoyong & Li, Junhong & Yu, Bo, 2021. "Quantifying economic benefits from free-floating bike-sharing systems: A trip-level inference approach and city-scale analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 89-103.
    19. Mateo-Babiano, Iderlina & Bean, Richard & Corcoran, Jonathan & Pojani, Dorina, 2016. "How does our natural and built environment affect the use of bicycle sharing?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 295-307.
    20. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123006378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.