IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3217-d238587.html
   My bibliography  Save this article

Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage

Author

Listed:
  • Jinyi Zhou

    (Department of Business Administration, Donlinks School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China)

  • Changyuan Jing

    (International School, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Xiangjun Hong

    (School of Economics and Management, Tsinghua University, Beijing 100084, China)

  • Tian Wu

    (NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
    School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
    Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Public bikesharing is an environmentally friendly transportation mode that can remedy the urban “last mile” problem to some extents. Prior studies have investigated many predictors of the public bikesharing usage. For example, researchers find that gender, age, and physical conditions are significantly related to the public bikesharing usage. However, few studies have tested the characteristics of each ride and no integrative theoretical framework has been provided to explain these findings. In the current study, based on the conservation of resource theory, we suggest that the reason why these factors can predict public bikesharing usage is people’s inner needs of resource conservation. Based on this theoretical framework, we propose that: first, gender, age, and season will have direct impacts on public bikesharing usage (i.e., distance and user type); second, gender, age, and season will interactively predict public bikesharing usage as well. A relatively large sample with 1,383,773 rides in 2018 from New York City is used to test our hypotheses. The results indicate that old females indeed use public bicycle less intensively in the winter than young males do in other seasons and thus support the three-way interaction effect. Implications for the emerging public transport systems and limitations of this study are also discussed.

Suggested Citation

  • Jinyi Zhou & Changyuan Jing & Xiangjun Hong & Tian Wu, 2019. "Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3217-:d:238587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin T. Hazen & Robert E. Overstreet & Yacan Wang, 2015. "Predicting Public Bicycle Adoption Using the Technology Acceptance Model," Sustainability, MDPI, vol. 7(11), pages 1-16, October.
    2. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    3. repec:cdl:itsdav:qt79v822k5 is not listed on IDEAS
    4. Martin, Elliot W. & Shaheen, Susan A., 2014. "Evaluating public transit modal shift dynamics in response to bikesharing: a tale of two U.S. cities," Journal of Transport Geography, Elsevier, vol. 41(C), pages 315-324.
    5. repec:cdl:itsrrp:qt6x29n876 is not listed on IDEAS
    6. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    7. repec:cdl:itsrrp:qt3qr9h2pr is not listed on IDEAS
    8. Fuller, D. & Gauvin, L. & Kestens, Y. & Daniel, M. & Fournier, M. & Morency, P. & Drouin, L., 2013. "Impact evaluation of a public bicycle share program on cycling: A case example of BIXI in Montreal, Quebec," American Journal of Public Health, American Public Health Association, vol. 103(3), pages 85-92.
    9. repec:cdl:itsrrp:qt1x26m6z7 is not listed on IDEAS
    10. John Parkin & Mark Wardman & Matthew Page, 2008. "Estimation of the determinants of bicycle mode share for the journey to work using census data," Transportation, Springer, vol. 35(1), pages 93-109, January.
    11. Corcoran, Jonathan & Li, Tiebei & Rohde, David & Charles-Edwards, Elin & Mateo-Babiano, Derlie, 2014. "Spatio-temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 292-305.
    12. Yeran Sun & Amin Mobasheri & Xuke Hu & Weikai Wang, 2017. "Investigating Impacts of Environmental Factors on the Cycling Behavior of Bicycle-Sharing Users," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    13. repec:cdl:itsrrp:qt6qg8q6ft is not listed on IDEAS
    14. Parkes, Stephen D. & Marsden, Greg & Shaheen, Susan A. & Cohen, Adam P., 2013. "Understanding the diffusion of public bikesharing systems: evidence from Europe and North America," Journal of Transport Geography, Elsevier, vol. 31(C), pages 94-103.
    15. Ranran Yang & Ruyin Long, 2016. "Analysis of the Influencing Factors of the Public Willingness to Participate in Public Bicycle Projects and Intervention Strategies—A Case Study of Jiangsu Province, China," Sustainability, MDPI, vol. 8(4), pages 1-16, April.
    16. Nankervis, Max, 1999. "The effect of weather and climate on bicycle commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 417-431, August.
    17. Demetrio Carmine Festa & Carmen Forciniti, 2019. "Attitude towards Bike Use in Rende, a Small Town in South Italy," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Zhao & Ghim Ping Ong & Wei Wang & Wei Zhou, 2021. "Estimating Public Bicycle Trip Characteristics with Consideration of Built Environment Data," Sustainability, MDPI, vol. 13(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    2. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    3. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    4. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    5. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    6. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    7. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    9. Bean, Richard & Pojani, Dorina & Corcoran, Jonathan, 2021. "How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones," Journal of Transport Geography, Elsevier, vol. 95(C).
    10. Li, Weibo & Kamargianni, Maria, 2018. "Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 277-291.
    11. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
    12. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    13. Akbari Majid & Zarghamfard Moslem & Hajisharifi Arezoo & Amir Entekhabi Shahram & Goodarzipour Sadrallah, 2022. "Modelling the Obstacles to using Bicycle Sharing Systems in the Tehran Metropolis: A Structural Analysis," Quaestiones Geographicae, Sciendo, vol. 41(2), pages 109-124, June.
    14. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "Measuring immediate impacts of a new mass transit system on an existing bike-share system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 20-39.
    15. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    16. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    17. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    18. Mateo-Babiano, Iderlina & Bean, Richard & Corcoran, Jonathan & Pojani, Dorina, 2016. "How does our natural and built environment affect the use of bicycle sharing?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 295-307.
    19. Médard de Chardon, Cyrille & Caruso, Geoffrey, 2015. "Estimating bike-share trips using station level data," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 260-279.
    20. Wang, Yacan & Douglas, Matthew & Hazen, Benjamin, 2021. "Diffusion of public bicycle systems: Investigating influences of users’ perceived risk and switching intention," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 1-13.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3217-:d:238587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.