IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v147y2021ics1364032121004378.html
   My bibliography  Save this article

Water–energy nexus in Central Asia's lift irrigation schemes: Multi-level linkages

Author

Listed:
  • Karimov, Akmal Kh
  • Toshev, Rashid H.
  • Karshiev, Rustam
  • Karimov, Aziz A.

Abstract

Separating downstream agriculture from upstream hydropower in transboundary river basins complicates water management at the national level. The shift from hydropower to thermal power supply increases the competition for water between agriculture and energy generation, accelerates depletion of fossil energy resources, and increases greenhouse gas emissions. Because of the competition for scarce water between agriculture and energy generation, brackish groundwater irrigation has been explored as an option to cover the water deficit in Central Asia's lift irrigation zones. This study examines the combination of aquifer storage and recovery with drip irrigation to improve brackish groundwater quality in the Karshi Main Canal zone. In this zone, a cascade of sequential pump stations is used to lift water from the transboundary Amudarya River. The method used to evaluate the technology is a pilot-scale field study. The results show that wide-scale adoption of the technology can produce significant water (24%) and energy savings (19%), as well as reduced saline flows and emissions of greenhouse gases.

Suggested Citation

  • Karimov, Akmal Kh & Toshev, Rashid H. & Karshiev, Rustam & Karimov, Aziz A., 2021. "Water–energy nexus in Central Asia's lift irrigation schemes: Multi-level linkages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:rensus:v:147:y:2021:i:c:s1364032121004378
    DOI: 10.1016/j.rser.2021.111148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121004378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamiche, Ait Mimoune & Stambouli, Amine Boudghene & Flazi, Samir, 2016. "A review of the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 319-331.
    2. Molden, D. & Murray-Rust, H. & Sakthivadivel, R. & Makin, I., 2003. "A water-productivity framework for understanding and action," IWMI Books, Reports H032632, International Water Management Institute.
    3. Shah, Tushaar, 2009. "Climatic Change and Groundwater: India\u2019s Opportunities for Mitigation and Adaptation," Conference Papers h042693, International Water Management Institute.
    4. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2010. "The Effect of Irrigation Technology on Groundwater Use," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 25(3), pages 1-6.
    5. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    6. Siti Nuryanah & Sardar M. N. Islam, 2015. "The Context of the Case Study," Palgrave Macmillan Books, in: Corporate Governance and Financial Management, chapter 5, pages 145-156, Palgrave Macmillan.
    7. de Silva, Sanjiv & Schmitter, Petra & Thiha, Nyan & Suhardiman, Diana, 2019. "A handbook for establishing water user associations in pump-based irrigation schemes in Myanmar," Book Chapters,, International Water Management Institute.
    8. Detlef P. Van Vuuren & David L. Bijl & Patrick Bogaart & Elke Stehfest & Hester Biemans & Stefan C. Dekker & Jonathan C. Doelman & David E. H. J. Gernaat & Mathijs Harmsen, 2019. "Integrated scenarios to support analysis of the food–energy–water nexus," Nature Sustainability, Nature, vol. 2(12), pages 1132-1141, December.
    9. Karimov, Akmal Kh. & Smakhtin, Vladimir & Karimov, Aziz A. & Khodjiev, Khalim & Yakubov, Sadyk & Platonov, Alexander & Avliyakulov, Mirzaolim, 2018. "Reducing the energy intensity of lift irrigation schemes of Northern Tajikistan- potential options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2967-2975.
    10. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Bai & Lixiao Yao & Cheng Wang & Yongxuan Zhao & Weien Peng, 2022. "Optimization of Water and Energy Spatial Patterns in the Cascade Pump Station Irrigation District," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    2. Zhang, S.Q. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Yang, X., 2023. "Developing a copula-based input-output method for analyzing energy-water nexus of Tajikistan," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    2. Kumar, M. Dinesh & Singh, O.P. & Samad, Madar & Purohit, Chaitali & Didyala, Malkit Singh, 2009. "Water productivity of irrigated agriculture in India: potential areas for improvement," Book Chapters,, International Water Management Institute.
    3. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    4. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    5. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    6. Kumar, M. Dinesh & Amarasinghe, Upali A., 2009. "Strategic Analyses of the National River Linking Project (NRLP) of India, Series 4. Water productivity improvements in Indian agriculture: potentials, constraints and prospects," IWMI Books, Reports H042633, International Water Management Institute.
    7. Lejars, C. & Fusillier, JL & Bouarfa, S. & Brunel, L. & Rucheton, G., 2011. "Evaluation des impacts de restrictions d’eau pour l’usage agricole Une démarche à l’échelle des filières de production," 2011 Conference: Impacts of Climate Change on Agriculture, December 6-7, 2011, Rabat, Morocco 188551, Moroccan Association of Agricultural Economics (AMAEco).
    8. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    9. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    10. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    11. Karam, F. & Saliba, R. & Skaf, S. & Breidy, J. & Rouphael, Y. & Balendonck, J., 2011. "Yield and water use of eggplants (Solanum melongena L.) under full and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(8), pages 1307-1316, May.
    12. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
    13. Amarasinghe, Upali A. & Sikka, Alok & Mandave, Vidya & Panda, R. K. & Gorantiwar, S. & Ambast, S. K., 2021. "Improving economic water productivity to enhance resilience in canal irrigation systems: a pilot study of the Sina Irrigation System in Maharashtra, India," Papers published in Journals (Open Access), International Water Management Institute, pages 23(2):447-4.
    14. Kumar, M. Dinesh & van Dam, J. C., 2008. "Improving water productivity in agriculture in developing economies: in search of new avenues," IWMI Conference Proceedings 245276, International Water Management Institute.
    15. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    16. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    17. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    18. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    19. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    20. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:147:y:2021:i:c:s1364032121004378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.