IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v12y2008i5p1476-1484.html
   My bibliography  Save this article

Positive externalities of domestic biogas initiatives: Implications for financing

Author

Listed:
  • Srinivasan, Sunderasan

Abstract

Domestic biogas programs are often justified on the basis of the private benefits and costs accruing to the individual households, in terms of providing a superior cooking fuel, improved indoor air quality and saving of time spent on collecting firewood. This paper contends, however, that the economic surpluses from domestic biogas programs are realized beyond such narrowly defined project boundaries. The paper maintains that economic value addition from the consumptive use of the biogas for cooking and the non-consumptive and indirect value derived from the biogas plant providing feedstock for other processes and other such benefits as greenhouse gas mitigation (positive externalities) need to be accounted for. The process approach adopted by this paper would enable an integrated view of the value chain and consequently, a mechanism to reallocate costs and to distribute such surpluses.

Suggested Citation

  • Srinivasan, Sunderasan, 2008. "Positive externalities of domestic biogas initiatives: Implications for financing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1476-1484, June.
  • Handle: RePEc:eee:rensus:v:12:y:2008:i:5:p:1476-1484
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(07)00007-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bala, B.K. & Hossain, M.M., 1992. "Economics of biogas digesters in Bangladesh," Energy, Elsevier, vol. 17(10), pages 939-944.
    2. Allen, Bryon P. & Loomis, John B., 2006. "Deriving values for the ecological support function of wildlife: An indirect valuation approach," Ecological Economics, Elsevier, vol. 56(1), pages 49-57, January.
    3. Batzias, F.A. & Sidiras, D.K. & Spyrou, E.K., 2005. "Evaluating livestock manures for biogas production: a GIS based method," Renewable Energy, Elsevier, vol. 30(8), pages 1161-1176.
    4. van Groenendaal, Willem J. H., 1995. "Assessing demand when introducing a new fuel : Natural gas on Java," Energy Economics, Elsevier, vol. 17(2), pages 147-161, April.
    5. Ghosh, Nilabja, 2004. "Reducing dependence on chemical fertilizers and its financial implications for farmers in India," Ecological Economics, Elsevier, vol. 49(2), pages 149-162, June.
    6. Shi, Tian & Gill, Roderic, 2005. "Developing effective policies for the sustainable development of ecological agriculture in China: the case study of Jinshan County with a systems dynamics model," Ecological Economics, Elsevier, vol. 53(2), pages 223-246, April.
    7. Hanh H. Dang & Axel Michaelowa & Dao D. Tuan, 2003. "Synergy of adaptation and mitigation strategies in the context of sustainable development: the case of Vietnam," Climate Policy, Taylor & Francis Journals, vol. 3(sup1), pages 81-96, November.
    8. Lichtman, Rob, 1987. "Toward the diffusion of rural energy technologies: Some lessons from the Indian biogas program," World Development, Elsevier, vol. 15(3), pages 347-374, March.
    9. Hilton, F.G., 2006. "Poverty and pollution abatement: Evidence from lead phase-out," Ecological Economics, Elsevier, vol. 56(1), pages 125-131, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, J. & Chen, B., 2014. "Extended exergy-based sustainability accounting of a household biogas project in rural China," Energy Policy, Elsevier, vol. 68(C), pages 264-272.
    2. Singh, Renu & Shukla, Ashish & Tiwari, Sapna & Srivastava, Monika, 2014. "A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 713-728.
    3. Khondokar M. Rahman & David J. Edwards & Lynsey Melville & Hatem El-Gohary, 2019. "Implementation of Bioenergy Systems towards Achieving United Nations’ Sustainable Development Goals in Rural Bangladesh," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    4. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    5. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    6. Nazia Yasmin & Philipp Grundmann, 2019. "Pre- and Post-Adoption Beliefs about the Diffusion and Continuation of Biogas-Based Cooking Fuel Technology in Pakistan," Energies, MDPI, vol. 12(16), pages 1-16, August.
    7. Akram, Waqar & Lohano, Hemon Das & Inayatullah, Jan, 2017. "Adoption of Biogas: A Story from Rural Pakistan," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258206, Agricultural and Applied Economics Association.
    8. Freitas, F.F. & De Souza, S.S. & Ferreira, L.R.A. & Otto, R.B. & Alessio, F.J. & De Souza, S.N.M. & Venturini, O.J. & Ando Junior, O.H., 2019. "The Brazilian market of distributed biogas generation: Overview, technological development and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 146-157.
    9. Yanbo Wang & Boyao Zhi & Shumin Xiang & Guangxin Ren & Yongzhong Feng & Gaihe Yang & Xiaojiao Wang, 2023. "China’s Biogas Industry’s Sustainable Transition to a Low-Carbon Plan—A Socio-Technical Perspective," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    10. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    11. Khan, Ershad Ullah & Martin, Andrew R., 2015. "Optimization of hybrid renewable energy polygeneration system with membrane distillation for rural households in Bangladesh," Energy, Elsevier, vol. 93(P1), pages 1116-1127.
    12. Lixiao Zhang & Changbo Wang, 2014. "Energy and GHG Analysis of Rural Household Biogas Systems in China," Energies, MDPI, vol. 7(2), pages 1-18, February.
    13. Okello, Collins & Pindozzi, Stefania & Faugno, Salvatore & Boccia, Lorenzo, 2013. "Development of bioenergy technologies in Uganda: A review of progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 55-63.
    14. Buysman, Eric & Mol, Arthur P.J., 2013. "Market-based biogas sector development in least developed countries —The case of Cambodia," Energy Policy, Elsevier, vol. 63(C), pages 44-51.
    15. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    16. Feng, Tingting & Cheng, Shengkui & Min, Qingwen & Li, Wei, 2009. "Productive use of bioenergy for rural household in ecological fragile area, Panam County, Tibet in China: The case of the residential biogas model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2070-2078, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    2. Sunderasan Srinivasan, 2015. "Economic valuation and option-based payments for ecosystem services," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1055-1077, October.
    3. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    4. Jiseok Hong & Changwon Chae & Hyunjoong Kim & Hyeokjun Kwon & Jisu Kim & Ijung Kim, 2023. "Investigation to Enhance Solid Fuel Quality in Torrefaction of Cow Manure," Energies, MDPI, vol. 16(11), pages 1-13, June.
    5. Choragudi, Sravanthi, 2013. "Off-grid solar lighting systems: A way align India's sustainable and inclusive development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 890-899.
    6. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Seraina Buob & Gunter Stephan, 2008. "Global Climate Change and the Funding of Adaptation," Diskussionsschriften dp0804, Universitaet Bern, Departement Volkswirtschaft.
    8. Rui Jun Qin & Ho Hon Leung, 2021. "Becoming a Traditional Village: Heritage Protection and Livelihood Transformation of a Chinese Village," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    9. Stefan Heiske & Linas Jurgutis & Zsófia Kádár, 2015. "Evaluation of Novel Inoculation Strategies for Solid State Anaerobic Digestion of Yam Peelings in Low-Tech Digesters," Energies, MDPI, vol. 8(3), pages 1-15, March.
    10. Nguyen, The Ninh & Lobo, Antonio & Greenland, Steven, 2016. "Pro-environmental purchase behaviour: The role of consumers' biospheric values," Journal of Retailing and Consumer Services, Elsevier, vol. 33(C), pages 98-108.
    11. Karin Andrea Wigger & Dean A. Shepherd, 2020. "We’re All in the Same Boat: A Collective Model of Preserving and Accessing Nature-Based Opportunities," Entrepreneurship Theory and Practice, , vol. 44(3), pages 587-617, May.
    12. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    13. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    14. Zalengera, Collen & Blanchard, Richard E. & Eames, Philip C. & Juma, Alnord M. & Chitawo, Maxon L. & Gondwe, Kondwani T., 2014. "Overview of the Malawi energy situation and A PESTLE analysis for sustainable development of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 335-347.
    15. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    16. Srinivasan, Sunderasan, 2009. "The food v. fuel debate: A nuanced view of incentive structures," Renewable Energy, Elsevier, vol. 34(4), pages 950-954.
    17. van Groenendaal, Willem J. H., 1998. "Estimating NPV variability for deterministic models," European Journal of Operational Research, Elsevier, vol. 107(1), pages 202-213, May.
    18. Sahan T. M. Dissanayake, 2016. "Using STELLA simulation models to teach natural resource economics," The Journal of Economic Education, Taylor & Francis Journals, vol. 47(1), pages 40-48, January.
    19. Oniszk-Popławska, Anna & Matyka, Mariusz & Ryńska, Elżbieta Dagny, 2014. "Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 329-349.
    20. Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "Potential and cost of electricity generation from human and animal waste in Spain," Renewable Energy, Elsevier, vol. 35(2), pages 498-505.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:12:y:2008:i:5:p:1476-1484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.