IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i3p1802-1816d46374.html
   My bibliography  Save this article

Evaluation of Novel Inoculation Strategies for Solid State Anaerobic Digestion of Yam Peelings in Low-Tech Digesters

Author

Listed:
  • Stefan Heiske

    (Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark)

  • Linas Jurgutis

    (Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark)

  • Zsófia Kádár

    (Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark)

Abstract

The operation of household scale anaerobic digesters is typically based on diluted animal dung, requiring stabled livestock and adequate water availability. This excludes many rural households in low-income countries from the benefits of a domestic biogas digester. Solid state anaerobic digestion (SSAD) can be operated with low process water demands, but the technology involves operational challenges, as e.g., risk of process acidification or low degradation rates. This study aimed at developing simple methods to perform SSAD of yam peelings in low-tech applications by testing different inoculation strategies and evaluating the necessity of dung addition as a supportive biomass. In initial lab scale trials 143 ± 4 mL CH 4 /g VS (volatile solids) were obtained from a mixture of yam peelings and dung digested in a multi-layer-inoculated batch reactor. In a consecutive incubation cycle in which adapted inoculum was applied, bottom inoculated digesters loaded without dung reached a yield of 140 ± 16 mL CH 4 /g VS. This indicates that SSAD of yam peelings is possible with simple inoculation methods and dung addition is unnecessary after microbial adaptation. A comparison with a conventional fixed dome digester indicated that SSAD can reduce process water demand and the digester volume necessary to supply a given biogas demand.

Suggested Citation

  • Stefan Heiske & Linas Jurgutis & Zsófia Kádár, 2015. "Evaluation of Novel Inoculation Strategies for Solid State Anaerobic Digestion of Yam Peelings in Low-Tech Digesters," Energies, MDPI, vol. 8(3), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1802-1816:d:46374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/3/1802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/3/1802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mwakaje, Agnes Godfrey, 2008. "Dairy farming and biogas use in Rungwe district, South-west Tanzania: A study of opportunities and constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2240-2252, October.
    2. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    3. Lichtman, Rob, 1987. "Toward the diffusion of rural energy technologies: Some lessons from the Indian biogas program," World Development, Elsevier, vol. 15(3), pages 347-374, March.
    4. Richard J. Ciotola & Jay F. Martin & Juan M. Castańo & Jiyoung Lee & Frederick Michel, 2013. "Microbial Community Response to Seasonal Temperature Variation in a Small-Scale Anaerobic Digester," Energies, MDPI, vol. 6(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengistu, M.G. & Simane, B. & Eshete, G. & Workneh, T.S., 2015. "A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 306-316.
    2. Juan M. Castano & Jay F. Martin & Richard Ciotola, 2014. "Performance of a Small-Scale, Variable Temperature Fixed Dome Digester in a Temperate Climate," Energies, MDPI, vol. 7(9), pages 1-16, September.
    3. Gudina Terefe Tucho & Henri C. Moll & Anton J. M. Schoot Uiterkamp & Sanderine Nonhebel, 2016. "Problems with Biogas Implementation in Developing Countries from the Perspective of Labor Requirements," Energies, MDPI, vol. 9(9), pages 1-16, September.
    4. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    5. Roubík, Hynek & Mazancová, Jana & Rydval, Jan & Kvasnička, Roman, 2020. "Uncovering the dynamic complexity of the development of small–scale biogas technology through causal loops," Renewable Energy, Elsevier, vol. 149(C), pages 235-243.
    6. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    7. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2013. "Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 453-463.
    8. Choragudi, Sravanthi, 2013. "Off-grid solar lighting systems: A way align India's sustainable and inclusive development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 890-899.
    9. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    10. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    11. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    12. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    13. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    14. Barry, Marie-Louise & Steyn, Herman & Brent, Alan, 2011. "Selection of renewable energy technologies for Africa: Eight case studies in Rwanda, Tanzania and Malawi," Renewable Energy, Elsevier, vol. 36(11), pages 2845-2852.
    15. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    16. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    17. Zohaib Ur Rehman Afridi & Wu Jing & Hassan Younas, 2019. "Biogas Production and Fundamental Mass Transfer Mechanism in Anaerobic Granular Sludge," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    18. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    19. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1802-1816:d:46374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.