IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1-10.html
   My bibliography  Save this article

A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland

Author

Listed:
  • Höhn, J.
  • Lehtonen, E.
  • Rasi, S.
  • Rintala, J.

Abstract

The objective of this study was to analyse the spatial distribution and amount of potential biomass feedstock for biomethane production and optimal locations, sizes and number of biogas plants in southern Finland in the area of three regional waste management companies.

Suggested Citation

  • Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1-10
    DOI: 10.1016/j.apenergy.2013.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005710
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sultana, Arifa & Kumar, Amit, 2012. "Optimal siting and size of bioenergy facilities using geographic information system," Applied Energy, Elsevier, vol. 94(C), pages 192-201.
    2. Batzias, F.A. & Sidiras, D.K. & Spyrou, E.K., 2005. "Evaluating livestock manures for biogas production: a GIS based method," Renewable Energy, Elsevier, vol. 30(8), pages 1161-1176.
    3. Murphy, J.D. & Power, N., 2009. "Technical and economic analysis of biogas production in Ireland utilising three different crop rotations," Applied Energy, Elsevier, vol. 86(1), pages 25-36, January.
    4. Rosúa, J.M. & Pasadas, M., 2012. "Biomass potential in Andalusia, from grapevines, olives, fruit trees and poplar, for providing heating in homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4190-4195.
    5. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    6. Smyth, Beatrice M. & Smyth, Henry & Murphy, Jerry D., 2011. "Determining the regional potential for a grass biomethane industry," Applied Energy, Elsevier, vol. 88(6), pages 2037-2049, June.
    7. Zubaryeva, Alyona & Zaccarelli, Nicola & Del Giudice, Cecilia & Zurlini, Giovanni, 2012. "Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion – Mediterranean case study," Renewable Energy, Elsevier, vol. 39(1), pages 261-270.
    8. Murphy, J.D. & McKeogh, E., 2006. "The benefits of integrated treatment of wastes for the production of energy," Energy, Elsevier, vol. 31(2), pages 294-310.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oniszk-Popławska, Anna & Matyka, Mariusz & Ryńska, Elżbieta Dagny, 2014. "Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 329-349.
    2. Pantaleo, Antonio & Gennaro, Bernardo De & Shah, Nilay, 2013. "Assessment of optimal size of anaerobic co-digestion plants: An application to cattle farms in the province of Bari (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 57-70.
    3. Scarlat, Nicolae & Fahl, Fernando & Dallemand, Jean-François & Monforti, Fabio & Motola, Vicenzo, 2018. "A spatial analysis of biogas potential from manure in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 915-930.
    4. Thamsiriroj, T. & Smyth, H. & Murphy, J.D., 2011. "A roadmap for the introduction of gaseous transport fuel: A case study for renewable natural gas in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4642-4651.
    5. Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
    6. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Gil-Carrera, Laura & Browne, James D. & Kilgallon, Ian & Murphy, Jerry D., 2019. "Feasibility study of an off-grid biomethane mobile solution for agri-waste," Applied Energy, Elsevier, vol. 239(C), pages 471-481.
    8. Adl, Mehrdad & Sheng, Kuichuan & Gharibi, Arash, 2012. "Technical assessment of bioenergy recovery from cotton stalks through anaerobic digestion process and the effects of inexpensive pre-treatments," Applied Energy, Elsevier, vol. 93(C), pages 251-260.
    9. Francesca Valenti & Simona M. C. Porto, 2019. "Net Electricity and Heat Generated by Reusing Mediterranean Agro-Industrial By-Products," Energies, MDPI, Open Access Journal, vol. 12(3), pages 1-15, February.
    10. Andrea Baccioli & Lorenzo Ferrari & Romain Guiller & Oumayma Yousfi & Francesco Vizza & Umberto Desideri, 2019. "Feasibility Analysis of Bio-Methane Production in a Biogas Plant: A Case Study," Energies, MDPI, Open Access Journal, vol. 12(3), pages 1-16, February.
    11. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    12. O'Shea, Richard & Lin, Richen & Wall, David M. & Browne, James D. & Murphy, Jerry D, 2020. "Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery," Applied Energy, Elsevier, vol. 279(C).
    13. Diego Díaz-Vázquez & Susan Caroline Alvarado-Cummings & Demetrio Meza-Rodríguez & Carolina Senés-Guerrero & José de Anda & Misael Sebastián Gradilla-Hernández, 2020. "Evaluation of Biogas Potential from Livestock Manures and Multicriteria Site Selection for Centralized Anaerobic Digester Systems: The Case of Jalisco, México," Sustainability, MDPI, Open Access Journal, vol. 12(9), pages 1-32, April.
    14. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
    15. Martinát, Stanislav & Navrátil, Josef & Dvořák, Petr & Van der Horst, Dan & Klusáček, Petr & Kunc, Josef & Frantál, Bohumil, 2016. "Where AD plants wildly grow: The spatio-temporal diffusion of agricultural biogas production in the Czech Republic," Renewable Energy, Elsevier, vol. 95(C), pages 85-97.
    16. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    17. Valenti, Francesca & Porto, Simona M.C. & Dale, Bruce E. & Liao, Wei, 2018. "Spatial analysis of feedstock supply and logistics to establish regional biogas power generation: A case study in the region of Sicily," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 50-63.
    18. Van Meerbeek, Koenraad & Ottoy, Sam & De Meyer, Annelies & Van Schaeybroeck, Tom & Van Orshoven, Jos & Muys, Bart & Hermy, Martin, 2015. "The bioenergy potential of conservation areas and roadsides for biogas in an urbanized region," Applied Energy, Elsevier, vol. 154(C), pages 742-751.
    19. Lozano-García, Diego Fabián & Santibañez-Aguilar, José Ezequiel & Lozano, Francisco J. & Flores-Tlacuahuac, Antonio, 2020. "GIS-based modeling of residual biomass availability for energy and production in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    20. Franco, Camilo & Bojesen, Mikkel & Hougaard, Jens Leth & Nielsen, Kurt, 2015. "A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants," Applied Energy, Elsevier, vol. 140(C), pages 304-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1-10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.