IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v89y2016icp1-11.html
   My bibliography  Save this article

Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances

Author

Listed:
  • Auburger, Sebastian
  • Jacobs, Anna
  • Märländer, Bernward
  • Bahrs, Enno

Abstract

Power production from biogas is quite common in Germany and other parts of the world. German biogas production, in particular, primarily uses silage corn as feedstock which is unpopular with the society because of the negative side effects. Sugar beets could be an alternative. This paper maps the aggregated results concerning the greenhouse gas (GHG) emissions and energy balances of power production from different energy crops at national level based on field experiments and all biogas plants registered in Germany. The regional feedstock production costs integrated into the objective function of a plant specific linear optimization model were calculated based on regional production circumstances and district specific yields. Different scenarios with e.g. a fixed share of sugar beets in biogas plant feedstock mix as well as yield increases due to biological and technical progress of silage corn and sugar beets were compared to a business as usual scenario in terms of their effects on GHG emissions and energy balances of power production. The results demonstrated that the GHG emissions and energy balances depend on regional production circumstances. Furthermore, forcing sugar beets into feedstock mix resulted in generally higher GHG emissions and deteriorated energy balances.

Suggested Citation

  • Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
  • Handle: RePEc:eee:renene:v:89:y:2016:i:c:p:1-11
    DOI: 10.1016/j.renene.2015.11.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.11.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goemann, Horst & Witte de, Thomas & Peter, Guenter & Tietz, Andreas, 2013. "Auswirkungen der Biogaserzeugung auf die Landwirtschaft," Thünen Report 179196, Johann Heinrich von Thünen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries.
    2. Wünsch, Karin & Gruber, Sabine & Claupein, Wilhelm, 2012. "Profitability analysis of cropping systems for biogas production on marginal sites in southwestern Germany," Renewable Energy, Elsevier, vol. 45(C), pages 213-220.
    3. Haenel, Hans-Dieter & Rösemann, Claus & Dämmgen, Ulrich & Poddey, Eike & Freibauer, Annette & Wulf, Sebastian & Eurich-Menden, Brigitte & Döhler, Helmut & Schreiner, Carsten & Bauer, Beate & Osterburg, 2014. "Calculations of gaseous and particulate emissions from German agriculture 1990 - 2012: Report on methods and data (RMD) Submission 2014 [Berechnung von gas- und partikelförmigen Emissionen aus der ," Thünen Reports 17, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    4. Jones, M. R., 1989. "Analysis of the use of energy in agriculture--Approaches and problems," Agricultural Systems, Elsevier, vol. 29(4), pages 339-355.
    5. Havukainen, J. & Uusitalo, V. & Niskanen, A. & Kapustina, V. & Horttanainen, M., 2014. "Evaluation of methods for estimating energy performance of biogas production," Renewable Energy, Elsevier, vol. 66(C), pages 232-240.
    6. Murphy, J.D. & Power, N., 2009. "Technical and economic analysis of biogas production in Ireland utilising three different crop rotations," Applied Energy, Elsevier, vol. 86(1), pages 25-36, January.
    7. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    8. Uusitalo, V. & Havukainen, J. & Manninen, K. & Höhn, J. & Lehtonen, E. & Rasi, S. & Soukka, R. & Horttanainen, M., 2014. "Carbon footprint of selected biomass to biogas production chains and GHG reduction potential in transportation use," Renewable Energy, Elsevier, vol. 66(C), pages 90-98.
    9. Meyer-Aurich, Andreas & Schattauer, Alexander & Hellebrand, Hans Jürgen & Klauss, Hilde & Plöchl, Matthias & Berg, Werner, 2012. "Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources," Renewable Energy, Elsevier, vol. 37(1), pages 277-284.
    10. Gömann, Horst & de Witte, Thomas & Peter, Günter & Tietz, Andreas, 2013. "Auswirkungen der Biogaserzeugung auf die Landwirtschaft," Thünen Reports 10, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    11. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    12. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Fiala, Marco & Feijoo, Gumersindo & Lema, Juan M. & Moreira, María Teresa, 2014. "Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops," Renewable Energy, Elsevier, vol. 68(C), pages 625-635.
    13. Stefan Lechtenb�hmer & Hans-Jochen Luhmann, 2013. "Decarbonization and regulation of Germany's electricity system after Fukushima," Climate Policy, Taylor & Francis Journals, vol. 13(sup01), pages 146-154, March.
    14. Felten, Daniel & Fröba, Norbert & Fries, Jérôme & Emmerling, Christoph, 2013. "Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus, rapeseed, and maize) based on farming conditions in Western Germany," Renewable Energy, Elsevier, vol. 55(C), pages 160-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gurinderpal Singh & VK Jain & Amanpreet Singh, 2018. "Adaptive network architecture and firefly algorithm for biogas heating model aided by photovoltaic thermal greenhouse system," Energy & Environment, , vol. 29(7), pages 1073-1097, November.
    2. Murillo-Alvarado, Pascual Eduardo & Ponce-Ortega, José María, 2022. "An optimization approach to increase the human development index through a biogas supply chain in a developing region," Renewable Energy, Elsevier, vol. 190(C), pages 347-357.
    3. Shane, Agabu & Gheewala, Shabbir H. & Kafwembe, Young, 2017. "Urban commercial biogas power plant model for Zambian towns," Renewable Energy, Elsevier, vol. 103(C), pages 1-14.
    4. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    5. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    6. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    7. Fuentes-Cortés, Luis Fabián & Ma, Yan & Ponce-Ortega, Jose María & Ruiz-Mercado, Gerardo & Zavala, Victor M., 2018. "Valuation of water and emissions in energy systems," Applied Energy, Elsevier, vol. 210(C), pages 518-528.
    8. Yasar, Abdullah & Rasheed, Rizwan & Tabinda, Amtul Bari & Tahir, Aleena & Sarwar, Friha, 2017. "Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 364-371.
    9. Teymoori Hamzehkolaei, Fatemeh & Amjady, Nima, 2018. "A techno-economic assessment for replacement of conventional fossil fuel based technologies in animal farms with biogas fueled CHP units," Renewable Energy, Elsevier, vol. 118(C), pages 602-614.
    10. De Laporte, Aaron V. & Ripplinger, David G., 2019. "The effects of site selection, opportunity costs and transportation costs on bioethanol production," Renewable Energy, Elsevier, vol. 131(C), pages 73-82.
    11. Jacobs, Anna & Auburger, Sebastian & Bahrs, Enno & Brauer-Siebrecht, Wiebke & Christen, Olaf & Götze, Philipp & Koch, Heinz-Josef & Mußhoff, Oliver & Rücknagel, Jan & Märländer, Bernward, 2017. "Replacing silage maize for biogas production by sugar beet – A system analysis with ecological and economical approaches," Agricultural Systems, Elsevier, vol. 157(C), pages 270-278.
    12. Jacobs, Anna & Auburger, Sebastian & Bahrs, Enno & Brauer-Siebrecht, Wiebke & Christen, Olaf & Götze, Philipp & Koch, Heinz-Josef & Rücknagel, Jan & Märländer, Bernward, 2017. "Greenhouse gas emission of biogas production out of silage maize and sugar beet – An assessment along the entire production chain," Applied Energy, Elsevier, vol. 190(C), pages 114-121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    2. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    3. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    4. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    5. Jacobs, Anna & Auburger, Sebastian & Bahrs, Enno & Brauer-Siebrecht, Wiebke & Christen, Olaf & Götze, Philipp & Koch, Heinz-Josef & Rücknagel, Jan & Märländer, Bernward, 2017. "Greenhouse gas emission of biogas production out of silage maize and sugar beet – An assessment along the entire production chain," Applied Energy, Elsevier, vol. 190(C), pages 114-121.
    6. Sica, Daniela & Esposito, Benedetta & Supino, Stefania & Malandrino, Ornella & Sessa, Maria Rosaria, 2023. "Biogas-based systems: An opportunity towards a post-fossil and circular economy perspective in Italy," Energy Policy, Elsevier, vol. 182(C).
    7. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    8. Balussou, D. & McKenna, R. & Möst, D. & Fichtner, W., 2018. "A model-based analysis of the future capacity expansion for German biogas plants under different legal frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 119-131.
    9. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    10. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    11. Roesler, Tim & Hassler, Markus, 2019. "Creating niches – The role of policy for the implementation of bioenergy village cooperatives in Germany," Energy Policy, Elsevier, vol. 124(C), pages 95-101.
    12. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    13. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    14. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    15. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    16. Emma Lindkvist & Maria T. Johansson & Jakob Rosenqvist, 2017. "Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants," Energies, MDPI, vol. 10(11), pages 1-20, November.
    17. Gianluca Caposciutti & Andrea Baccioli & Lorenzo Ferrari & Umberto Desideri, 2020. "Biogas from Anaerobic Digestion: Power Generation or Biomethane Production?," Energies, MDPI, vol. 13(3), pages 1-15, February.
    18. Djatkov, Djordje & Effenberger, Mathias & Martinov, Milan, 2014. "Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems," Applied Energy, Elsevier, vol. 134(C), pages 163-175.
    19. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
    20. Felten, Daniel & Fröba, Norbert & Fries, Jérôme & Emmerling, Christoph, 2013. "Energy balances and greenhouse gas-mitigation potentials of bioenergy cropping systems (Miscanthus, rapeseed, and maize) based on farming conditions in Western Germany," Renewable Energy, Elsevier, vol. 55(C), pages 160-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:89:y:2016:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.