IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v113y2019ic53.html
   My bibliography  Save this article

Electricity rates for electric vehicle direct current fast charging in the United States

Author

Listed:
  • Muratori, Matteo
  • Kontou, Eleftheria
  • Eichman, Joshua

Abstract

While several efforts are promoting a widespread and convenient network of direct current fast charging (DCFC) stations to support electric vehicles, there is limited understanding of the magnitude and variability of the cost of electricity for these applications. This information gap may hinder optimal investing and planning for charging station placement and in turn affect electric vehicle adoption and usage. Here, we assess the electricity cost for different scenarios of DCFC station size and use based on over 7500 commercial and industrial electricity rates available for 2017 across the United States. Results show that the cost of electricity for DCFC varies dramatically, ranging from less than $0.10 to over $2 per kilowatt-hour, depending on station design and high uncertainty in use. The main driver of cost is low utilization, which results from a combination of few charging events and limited energy recharged during each event. Low utilization leads to significantly higher electricity cost, particularly for rates with demand charges; however, cost decreases rapidly as utilization increases. For high-utilization stations, selecting rates with demand charges can actually reduce electricity costs compared to non-demand-charge rates. Moreover, significant opportunities for cost savings based on existing rates include preferential charging during off-peak hours and limiting multi-plug station power so that not all plugs can be used simultaneously at maximum power.

Suggested Citation

  • Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:113:y:2019:i:c:53
    DOI: 10.1016/j.rser.2019.06.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119304356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.06.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McPhail, Donald, 2014. "Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response," Renewable Energy, Elsevier, vol. 67(C), pages 103-108.
    2. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    3. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2016. "Electricity costs for an electric vehicle fueling station with Level 3 charging," Applied Energy, Elsevier, vol. 169(C), pages 813-830.
    4. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
    5. Motoaki, Yutaka & Shirk, Matthew G., 2017. "Consumer behavioral adaption in EV fast charging through pricing," Energy Policy, Elsevier, vol. 108(C), pages 178-183.
    6. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
    7. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    8. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    9. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    10. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    11. Madina, Carlos & Zamora, Inmaculada & Zabala, Eduardo, 2016. "Methodology for assessing electric vehicle charging infrastructure business models," Energy Policy, Elsevier, vol. 89(C), pages 284-293.
    12. Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
    13. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    14. Rubino, Luigi & Capasso, Clemente & Veneri, Ottorino, 2017. "Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility," Applied Energy, Elsevier, vol. 207(C), pages 438-464.
    15. Muratori, Matteo & Elgqvist, Emma & Cutler, Dylan & Eichman, Joshua & Salisbury, Shawn & Fuller, Zachary & Smart, John, 2019. "Technology solutions to mitigate electricity cost for electric vehicle DC fast charging," Applied Energy, Elsevier, vol. 242(C), pages 415-423.
    16. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    17. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    18. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    19. Schroeder, Andreas & Traber, Thure, 2012. "The economics of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 43(C), pages 136-144.
    20. Dallinger, David & Wietschel, Martin, 2012. "Grid integration of intermittent renewable energy sources using price-responsive plug-in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3370-3382.
    21. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    22. Fang, Yingkai & Asche, Frank & Novan, Kevin, 2018. "The costs of charging Plug-in Electric Vehicles (PEVs): Within day variation in emissions and electricity prices," Energy Economics, Elsevier, vol. 69(C), pages 196-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ledna, Catherine & Muratori, Matteo & Brooker, Aaron & Wood, Eric & Greene, David, 2022. "How to support EV adoption: Tradeoffs between charging infrastructure investments and vehicle subsidies in California," Energy Policy, Elsevier, vol. 165(C).
    2. Ye, Tinghan & Liu, Shanshan & Kontou, Eleftheria, 2024. "Managed residential electric vehicle charging minimizes electricity bills while meeting driver and community preferences," Transport Policy, Elsevier, vol. 149(C), pages 122-138.
    3. Tamakloe, Reuben & Caesar, Livingstone Divine, 2024. "Decoding the patterns of critical factor associations driving electric vehicle recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    4. Lukas Lanz & Bessie Noll & Tobias S. Schmidt & Bjarne Steffen, 2022. "Comparing the levelized cost of electric vehicle charging options in Europe," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Erdogan, Nuh & Pamucar, Dragan & Kucuksari, Sadik & Deveci, Muhammet, 2021. "An integrated multi-objective optimization and multi-criteria decision-making model for optimal planning of workplace charging stations," Applied Energy, Elsevier, vol. 304(C).
    6. Dimanchev, Emil & Fleten, Stein-Erik & MacKenzie, Don & Korpås, Magnus, 2023. "Accelerating electric vehicle charging investments: A real options approach to policy design," Energy Policy, Elsevier, vol. 181(C).
    7. Steffen Limmer, 2019. "Dynamic Pricing for Electric Vehicle Charging—A Literature Review," Energies, MDPI, vol. 12(18), pages 1-24, September.
    8. Zhou, Zhe & Zhang, Xuan & Guo, Qinglai & Sun, Hongbin, 2021. "Analyzing power and dynamic traffic flows in coupled power and transportation networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Panah, Payam Ghaebi & Bornapour, Mosayeb & Hemmati, Reza & Guerrero, Josep M., 2021. "Charging station Stochastic Programming for Hydrogen/Battery Electric Buses using Multi-Criteria Crow Search Algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Noah Horesh & David A. Trinko & Jason C. Quinn, 2024. "Comparing costs and climate impacts of various electric vehicle charging systems across the United States," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Zihan Zhang & Enping Li & Guowei Zhang, 2023. "How Efficient China’s Tiered Pricing Is for Household Electricity: Evidence from Survey Data," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    12. Tang, Yanyan & Zhang, Qi & Wen, Zongguo & Bunn, Derek & Martin, Jesus Nieto, 2022. "Optimal analysis for facility configuration and energy management on electric light commercial vehicle charging," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    2. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    3. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    4. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    5. LaMonaca, Sarah & Ryan, Lisa, 2022. "The state of play in electric vehicle charging services – A review of infrastructure provision, players, and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Baumgarte, Felix & Kaiser, Matthias & Keller, Robert, 2021. "Policy support measures for widespread expansion of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 156(C).
    7. Ma, Shao-Chao & Fan, Ying, 2020. "A deployment model of EV charging piles and its impact on EV promotion," Energy Policy, Elsevier, vol. 146(C).
    8. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    9. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    10. Kim, Hyunjung & Kim, Dae-Wook & Kim, Man-Keun, 2022. "Economics of charging infrastructure for electric vehicles in Korea," Energy Policy, Elsevier, vol. 164(C).
    11. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Nian, Victor & Hari, M.P. & Yuan, Jun, 2019. "A new business model for encouraging the adoption of electric vehicles in the absence of policy support," Applied Energy, Elsevier, vol. 235(C), pages 1106-1117.
    13. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    14. Rabl, Regina & Reuter-Oppermann, Melanie & Jochem, Patrick E.P., 2024. "Charging infrastructure for electric vehicles in New Zealand," Transport Policy, Elsevier, vol. 148(C), pages 124-144.
    15. Ensslen, Axel & Gnann, Till & Jochem, Patrick & Plötz, Patrick & Dütschke, Elisabeth & Fichtner, Wolf, 2020. "Can product service systems support electric vehicle adoption?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 343-359.
    16. Srinivasa Raghavan, Seshadri, 2020. "Behavioral Realism of Plug-In Electric Vehicle Usage: Implications for Emission Benefits, Energy Consumption, and Policies," Institute of Transportation Studies, Working Paper Series qt1rz000pf, Institute of Transportation Studies, UC Davis.
    17. Zheng, Xuemei & Menezes, Flavio & Zheng, Xiaofeng & Wu, Chengkuan, 2022. "An empirical assessment of the impact of subsidies on EV adoption in China: A difference-in-differences approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 121-136.
    18. Andrenacci, N. & Genovese, A. & Ragona, R., 2017. "Determination of the level of service and customer crowding for electric charging stations through fuzzy models and simulation techniques," Applied Energy, Elsevier, vol. 208(C), pages 97-107.
    19. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2017. "Electricity costs for a Level 3 electric vehicle fueling station integrated with a building," Applied Energy, Elsevier, vol. 191(C), pages 367-384.
    20. Zhou, Wenbin & Cleaver, Christopher J. & Dunant, Cyrille F. & Allwood, Julian M. & Lin, Jianguo, 2023. "Cost, range anxiety and future electricity supply: A review of how today's technology trends may influence the future uptake of BEVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:113:y:2019:i:c:53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.