IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v280y2025ics0925527324003566.html
   My bibliography  Save this article

Understanding and predicting online product return behavior: An interpretable machine learning approach

Author

Listed:
  • Duong, Quang Huy
  • Zhou, Li
  • Van Nguyen, Truong
  • Meng, Meng

Abstract

Product return is a costly phenomenon, which could be mitigated by examining how intrinsic (e.g., durability, reliability) and extrinsic (e.g., services, packaging) product attributes trigger online product return behavior (PRB). This study develops an interpretable machine learning predictive approach for PRB by extracting product attributes from customer reviews across five product categories. Our results suggest that, among extrinsic attributes, product returns management, packaging and customer services are key PRB drivers. For intrinsic attributes, the impact is rather distinctive to each product category. To reduce PRB, sellers should encourage customer feedback on primary features for books, and secondary features for electronics. For food, home appliances and electronics, sellers should improve product appearances and provide estimated product lifespans with warranties to cover premature failures. Surprisingly, for fashion, durability is imperative as dissatisfied consumers may keep the product if it is durable. Regarding PRB prediction, the optimal random forest model can accurately flag reviews with high risk of return intention regardless explicit or implicit customers’ expressions. This helps sellers selectively prevent product returns in a cost-effective manner. The research contributes to the marketing-operations interface by supporting retailers in tailoring the online marketing strategy and post-purchase services, manufacturers in identifying and improving shortcomings of product design, and product return operators in quickly selecting the best treatment pathway for returned products.

Suggested Citation

  • Duong, Quang Huy & Zhou, Li & Van Nguyen, Truong & Meng, Meng, 2025. "Understanding and predicting online product return behavior: An interpretable machine learning approach," International Journal of Production Economics, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:proeco:v:280:y:2025:i:c:s0925527324003566
    DOI: 10.1016/j.ijpe.2024.109499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527324003566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2024.109499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Beril Toktay & Lawrence M. Wein & Stefanos A. Zenios, 2000. "Inventory Management of Remanufacturable Products," Management Science, INFORMS, vol. 46(11), pages 1412-1426, November.
    2. Z. Eddie Ning & J. Miguel Villas-Boas, 2023. "Browse or Experience," Marketing Science, INFORMS, vol. 42(2), pages 336-359, March.
    3. Zhang, Danni & Frei, Regina & Senyo, P.K. & Bayer, Steffen & Gerding, Enrico & Wills, Gary & Beck, Adrian, 2023. "Understanding fraudulent returns and mitigation strategies in multichannel retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    4. Salhab, Rabih & Le Ny, Jérôme & Malhamé, Roland P. & Zaccour, Georges, 2022. "Dynamic marketing policies with rating-sensitive consumers: A mean-field games approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1079-1093.
    5. Román, Sergio & Riquelme, Isabel P. & Iacobucci, Dawn, 2023. "Fake or credible? Antecedents and consequences of perceived credibility in exaggerated online reviews," Journal of Business Research, Elsevier, vol. 156(C).
    6. Duong, Quang Huy & Zhou, Li & Meng, Meng & Nguyen, Truong Van & Ieromonachou, Petros & Nguyen, Duy Tiep, 2022. "Understanding product returns: A systematic literature review using machine learning and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 243(C).
    7. Janakiraman, Narayan & Syrdal, Holly A. & Freling, Ryan, 2016. "The Effect of Return Policy Leniency on Consumer Purchase and Return Decisions: A Meta-analytic Review," Journal of Retailing, Elsevier, vol. 92(2), pages 226-235.
    8. Claudia Symmank, 2019. "Extrinsic and intrinsic food product attributes in consumer and sensory research: literature review and quantification of the findings," Management Review Quarterly, Springer, vol. 69(1), pages 39-74, February.
    9. Klein, Lisa R., 1998. "Evaluating the Potential of Interactive Media through a New Lens: Search versus Experience Goods," Journal of Business Research, Elsevier, vol. 41(3), pages 195-203, March.
    10. Yang, Lu & Li, Xiangyong & Xia, Ye & Aneja, Y.P., 2023. "Returns operations in omnichannel retailing with buy-online-and-return-to-store," Omega, Elsevier, vol. 119(C).
    11. Daria Dzyabura & Siham El Kihal & John R. Hauser & Marat Ibragimov, 2023. "Leveraging the Power of Images in Managing Product Return Rates," Marketing Science, INFORMS, vol. 42(6), pages 1125-1142, November.
    12. Decker, Reinhold & Trusov, Michael, 2010. "Estimating aggregate consumer preferences from online product reviews," International Journal of Research in Marketing, Elsevier, vol. 27(4), pages 293-307.
    13. Zhao, Xiujie & Chen, Piao & Lv, Shanshan & He, Zhen, 2023. "Reliability testing for product return prediction," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1349-1363.
    14. Nelson, Philip, 1974. "Advertising as Information," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 729-754, July/Aug..
    15. Moorthy, Sridhar & Hawkins, Scott A., 2005. "Advertising repetition and quality perception," Journal of Business Research, Elsevier, vol. 58(3), pages 354-360, March.
    16. Akturk, M. Serkan & Ketzenberg, Michael & Yıldız, Barış, 2021. "Managing consumer returns with technology-enabled countermeasures," Omega, Elsevier, vol. 102(C).
    17. Dekker, Rommert & Pinçe, Çerağ & Zuidwijk, Rob & Jalil, Muhammad Naiman, 2013. "On the use of installed base information for spare parts logistics: A review of ideas and industry practice," International Journal of Production Economics, Elsevier, vol. 143(2), pages 536-545.
    18. Girard, Tulay & Dion, Paul, 2010. "Validating the search, experience, and credence product classification framework," Journal of Business Research, Elsevier, vol. 63(9-10), pages 1079-1087, September.
    19. John Hulland & Mark Houston, 2021. "The importance of behavioral outcomes," Journal of the Academy of Marketing Science, Springer, vol. 49(3), pages 437-440, May.
    20. Cheng, Yi-Hsiu & Ho, Hui-Yi, 2015. "Social influence's impact on reader perceptions of online reviews," Journal of Business Research, Elsevier, vol. 68(4), pages 883-887.
    21. Yili (Kevin) Hong & Paul A. Pavlou, 2014. "Product Fit Uncertainty in Online Markets: Nature, Effects, and Antecedents," Information Systems Research, INFORMS, vol. 25(2), pages 328-344, June.
    22. Wang, Feng & Liu, Xuefeng & Fang, Eric (Er), 2015. "User Reviews Variance, Critic Reviews Variance, and Product Sales: An Exploration of Customer Breadth and Depth Effects," Journal of Retailing, Elsevier, vol. 91(3), pages 372-389.
    23. Endo, Seiji & Yang, Jun & Park, JungKun, 2012. "The investigation on dimensions of e-satisfaction for online shoes retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 19(4), pages 398-405.
    24. Prabuddha De & Yu (Jeffrey) Hu & Mohammad S. Rahman, 2013. "Product-Oriented Web Technologies and Product Returns: An Exploratory Study," Information Systems Research, INFORMS, vol. 24(4), pages 998-1010, December.
    25. Freeman Wu & Martin Reimann & Gratiana Pol & C. Whan Park, 2023. "The scarcity of beauty: how and why product aesthetics mobilize consumer acquisition effort," Journal of the Academy of Marketing Science, Springer, vol. 51(6), pages 1245-1265, November.
    26. Zhang, Yufei & Voorhees, Clay M. & Lin, Chen & Chiang, Jeongwen & Hult, G.Tomas M. & Calantone, Roger J., 2022. "Information Search and Product Returns Across Mobile and Traditional Online Channels," Journal of Retailing, Elsevier, vol. 98(2), pages 260-276.
    27. Cox, Jayne & Griffith, Sarah & Giorgi, Sara & King, Geoff, 2013. "Consumer understanding of product lifetimes," Resources, Conservation & Recycling, Elsevier, vol. 79(C), pages 21-29.
    28. Claudia Townsend & Sanjay Sood, 2012. "Self-Affirmation through the Choice of Highly Aesthetic Products," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 39(2), pages 415-428.
    29. Minnema, Alec & Bijmolt, Tammo H.A. & Gensler, Sonja & Wiesel, Thorsten, 2016. "To Keep or Not to Keep: Effects of Online Customer Reviews on Product Returns," Journal of Retailing, Elsevier, vol. 92(3), pages 253-267.
    30. Nachiketa Sahoo & Chrysanthos Dellarocas & Shuba Srinivasan, 2018. "The Impact of Online Product Reviews on Product Returns," Information Systems Research, INFORMS, vol. 29(3), pages 723-738, September.
    31. Van Nguyen, Truong & Zhou, Li & Chong, Alain Yee Loong & Li, Boying & Pu, Xiaodie, 2020. "Predicting customer demand for remanufactured products: A data-mining approach," European Journal of Operational Research, Elsevier, vol. 281(3), pages 543-558.
    32. Guangzhi Shang & Bikram P. Ghosh & Michael R. Galbreth, 2017. "Optimal Retail Return Policies with Wardrobing," Production and Operations Management, Production and Operations Management Society, vol. 26(7), pages 1315-1332, July.
    33. Cui, Hailong & Rajagopalan, Sampath & Ward, Amy R., 2020. "Predicting product return volume using machine learning methods," European Journal of Operational Research, Elsevier, vol. 281(3), pages 612-627.
    34. Hu, Jianhao & Zhang, Xuan & Chen, Hanyu(Yuki) & Li, Wanyue, 2024. "When it rains, it pours? The impact of weather on customer returns in the brick-and-mortar retail store," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    35. Brechan, Inge, 2006. "The different effect of primary and secondary product attributes on customer satisfaction," Journal of Economic Psychology, Elsevier, vol. 27(3), pages 441-458, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duong, Quang Huy & Zhou, Li & Meng, Meng & Nguyen, Truong Van & Ieromonachou, Petros & Nguyen, Duy Tiep, 2022. "Understanding product returns: A systematic literature review using machine learning and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 243(C).
    2. Schulz, Petra & Shehu, Edlira & Clement, Michel, 2019. "When consumers can return digital products: Influence of firm- and consumer-induced communication on the returns and profitability of news articles," International Journal of Research in Marketing, Elsevier, vol. 36(3), pages 454-470.
    3. Dokyun Lee & Kartik Hosanagar, 2021. "How Do Product Attributes and Reviews Moderate the Impact of Recommender Systems Through Purchase Stages?," Management Science, INFORMS, vol. 67(1), pages 524-546, January.
    4. Björn Stöcker & Daniel Baier & Benedikt M. Brand, 2021. "New insights in online fashion retail returns from a customers’ perspective and their dynamics," Journal of Business Economics, Springer, vol. 91(8), pages 1149-1187, October.
    5. von Zahn, Moritz & Bauer, Kevin & Mihale-Wilson, Cristina & Jagow, Johanna & Speicher, Max & Hinz, Oliver, 2022. "The smart green nudge: Reducing product returns through enriched digital footprints & causal machine learning," SAFE Working Paper Series 363, Leibniz Institute for Financial Research SAFE, revised 2022.
    6. El Kihal, Siham & Shehu, Edlira, 2022. "It's not only what they buy, it's also what they keep: Linking marketing instruments to product returns," Journal of Retailing, Elsevier, vol. 98(3), pages 558-571.
    7. Necati Ertekin & Michael E. Ketzenberg & Gregory R. Heim, 2020. "Assessing Impacts of Store and Salesperson Dimensions of Retail Service Quality on Consumer Returns," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1232-1255, May.
    8. Minnema, Alec & Bijmolt, Tammo H.A. & Gensler, Sonja & Wiesel, Thorsten, 2016. "To Keep or Not to Keep: Effects of Online Customer Reviews on Product Returns," Journal of Retailing, Elsevier, vol. 92(3), pages 253-267.
    9. Román, Sergio & Riquelme, Isabel P. & Iacobucci, Dawn, 2023. "Fake or credible? Antecedents and consequences of perceived credibility in exaggerated online reviews," Journal of Business Research, Elsevier, vol. 156(C).
    10. Tibert Verhagen & Daniel Bloemers, 2018. "Exploring the cognitive and affective bases of online purchase intentions: a hierarchical test across product types," Electronic Commerce Research, Springer, vol. 18(3), pages 537-561, September.
    11. Hu, Jianhao & Zhang, Xuan & Chen, Hanyu(Yuki) & Li, Wanyue, 2024. "When it rains, it pours? The impact of weather on customer returns in the brick-and-mortar retail store," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    12. Pei-Yu Chen & Yili Hong & Ying Liu, 2018. "The Value of Multidimensional Rating Systems: Evidence from a Natural Experiment and Randomized Experiments," Management Science, INFORMS, vol. 64(10), pages 4629-4647, October.
    13. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    14. Chen, Jing & Yu, Bo & Chen, Bintong & Liu, Zhuojun, 2023. "Lenient vs. stringent returns policies in the presence of fraudulent returns: The role of customers’ fairness perceptions," Omega, Elsevier, vol. 117(C).
    15. Daria Dzyabura & Siham El Kihal & John R. Hauser & Marat Ibragimov, 2023. "Leveraging the Power of Images in Managing Product Return Rates," Marketing Science, INFORMS, vol. 42(6), pages 1125-1142, November.
    16. Xuying Zhao & Hong Guo & Gangshu Cai & Subhajyoti Bandyopadhyay, 2021. "The Role of Expectation–Reality Discrepancy in Service Contracts," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4160-4175, November.
    17. Marriott, Joshua & Bektaş, Tolga & Leung, Erik Ka Ho & Lyons, Andrew, 2025. "The billion-pound question in fashion E-commerce: Investigating the anatomy of returns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    18. Velasco, Franklin & Yang, Zhiyong & Janakiraman, Narayanan, 2021. "A meta-analytic investigation of consumer response to anthropomorphic appeals: The roles of product type and uncertainty avoidance," Journal of Business Research, Elsevier, vol. 131(C), pages 735-746.
    19. Fan, Huirong & Khouja, Moutaz & Zhou, Jing, 2022. "Design of win-win return policies for online retailers," European Journal of Operational Research, Elsevier, vol. 301(2), pages 675-693.
    20. Zhang, Danni & Frei, Regina & Senyo, P.K. & Bayer, Steffen & Gerding, Enrico & Wills, Gary & Beck, Adrian, 2023. "Understanding fraudulent returns and mitigation strategies in multichannel retailing," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:280:y:2025:i:c:s0925527324003566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.