IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v181y2016ipap162-173.html
   My bibliography  Save this article

Demand forecasting with four-parameter exponential smoothing

Author

Listed:
  • Ferbar Tratar, Liljana
  • Mojškerc, Blaž
  • Toman, Aleš

Abstract

Exponential smoothing methods are powerful tools for denoising time series, predicting future demand and decreasing inventory costs. In this paper we develop a smoothing and forecasting method that is intuitive, easy to implement, computationally stable, and can satisfactorily handle both, additive and multiplicative seasonality, even when time series contain several zero entries and large noise component.

Suggested Citation

  • Ferbar Tratar, Liljana & Mojškerc, Blaž & Toman, Aleš, 2016. "Demand forecasting with four-parameter exponential smoothing," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 162-173.
  • Handle: RePEc:eee:proeco:v:181:y:2016:i:pa:p:162-173
    DOI: 10.1016/j.ijpe.2016.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527316301839
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Gorr, Wilpen L. & Schneider, Matthew J., 2013. "Large-change forecast accuracy: Reanalysis of M3-Competition data using receiver operating characteristic analysis," International Journal of Forecasting, Elsevier, vol. 29(2), pages 274-281.
    3. Snyder, Ralph, 2002. "Forecasting sales of slow and fast moving inventories," European Journal of Operational Research, Elsevier, vol. 140(3), pages 684-699, August.
    4. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    5. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    6. Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
    7. Wallström, Peter & Segerstedt, Anders, 2010. "Evaluation of forecasting error measurements and techniques for intermittent demand," International Journal of Production Economics, Elsevier, vol. 128(2), pages 625-636, December.
    8. Gene K. Groff, 1973. "Empirical Comparison of Models for Short Range Forecasting," Management Science, INFORMS, vol. 20(1), pages 22-31, September.
    9. Syntetos, A. A. & Boylan, J. E., 2001. "On the bias of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 457-466, May.
    10. Billah, Baki & King, Maxwell L. & Snyder, Ralph D. & Koehler, Anne B., 2006. "Exponential smoothing model selection for forecasting," International Journal of Forecasting, Elsevier, vol. 22(2), pages 239-247.
    11. Lawton, Richard, 1998. "How should additive Holt-Winters estimates be corrected?," International Journal of Forecasting, Elsevier, vol. 14(3), pages 393-403, September.
    12. Rasmussen, Rasmus, 2004. "On time series data and optimal parameters," Omega, Elsevier, vol. 32(2), pages 111-120, April.
    13. McKenzie, Eddie & Gardner Jr., Everette S., 2010. "Damped trend exponential smoothing: A modelling viewpoint," International Journal of Forecasting, Elsevier, vol. 26(4), pages 661-665, October.
    14. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    15. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    16. Ferbar Tratar, Liljana, 2015. "Forecasting method for noisy demand," International Journal of Production Economics, Elsevier, vol. 161(C), pages 64-73.
    17. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
    18. Strijbosch, Leo W.G. & Syntetos, Aris A. & Boylan, John E. & Janssen, Elleke, 2011. "On the interaction between forecasting and stock control: The case of non-stationary demand," International Journal of Production Economics, Elsevier, vol. 133(1), pages 470-480, September.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:181:y:2016:i:pa:p:162-173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.