IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v97y2019i1d10.1007_s11069-019-03626-z.html
   My bibliography  Save this article

A comprehensive literature review of the demand forecasting methods of emergency resources from the perspective of artificial intelligence

Author

Listed:
  • Xiaoxin Zhu

    (Ocean University of China)

  • Guanghai Zhang

    (Ocean University of China)

  • Baiqing Sun

    (Harbin Institute of Technology)

Abstract

In recent decades, several forecasting methods have been proposed so as to aid in selecting from all optimal alternatives in the demand of emergency resources. Academic research in the field of emergency management has increasingly focused on artificial intelligence. However, more attention has been paid to attempts at simulating the human brain, with little focus on addressing intelligent information processing techniques based on machine learning, big data and smart devices. In this paper, a comprehensive literature review is presented in order to classify and interpret current research on demand forecasting methodologies and applications. A total of 1235 academic papers from 1980 to 2018 in the SpringerLink and Elsevier ScienceDirect databases are categorized as follows: time series analysis, case-based reasoning (CBR), mathematical models, information technology, literature reviews, and discussion and analysis. Application areas from business source premier include papers on the topics of emergency management, decision-making, decision relief, logistics, fuzzy sets and other topics. Academic publications are classified by (1) year of publication, (2) journal of publication, (3) database source, (4) methodology and (5) research discipline. The results of this literature review show that, despite forecasting methods such as ARIMA, CBR and mathematical models appearing to play a pivotal role in promoting prediction performance, there is a need to explore more real-time forecasting approaches based on intelligent information processing techniques so as to achieve appropriate dynamic demand prediction that is adaptable to emergency and rescue situations. The intention for this paper is to be a useful reference point for those with research needs in forecasting methodologies and the applications of emergency resources.

Suggested Citation

  • Xiaoxin Zhu & Guanghai Zhang & Baiqing Sun, 2019. "A comprehensive literature review of the demand forecasting methods of emergency resources from the perspective of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 65-82, May.
  • Handle: RePEc:spr:nathaz:v:97:y:2019:i:1:d:10.1007_s11069-019-03626-z
    DOI: 10.1007/s11069-019-03626-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03626-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03626-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    2. Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
    3. Shaohong Wu & Jing Jin & Tao Pan, 2015. "Empirical seismic vulnerability curve for mortality: case study of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 645-662, June.
    4. Katerina Tzavella & Alexander Fekete & Frank Fiedrich, 2018. "Opportunities provided by geographic information systems and volunteered geographic information for a timely emergency response during flood events in Cologne, Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 29-57, April.
    5. Sheu, Jiuh-Biing, 2007. "An emergency logistics distribution approach for quick response to urgent relief demand in disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 687-709, November.
    6. Sheu, Jiuh-Biing, 2010. "Dynamic relief-demand management for emergency logistics operations under large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 1-17, January.
    7. S Taskin & E J Lodree,, 2011. "A Bayesian decision model with hurricane forecast updates for emergency supplies inventory management," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1098-1108, June.
    8. Ferbar Tratar, Liljana & Mojškerc, Blaž & Toman, Aleš, 2016. "Demand forecasting with four-parameter exponential smoothing," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 162-173.
    9. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    10. Chiu, Yi-Chang & Zheng, Hong, 2007. "Real-time mobilization decisions for multi-priority emergency response resources and evacuation groups: Model formulation and solution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 710-736, November.
    11. Lee, Jung Hoon & Hancock, Marguerite Gong & Hu, Mei-Chih, 2014. "Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 80-99.
    12. Ruey S. Tsay, 2016. "Some Methods for Analyzing Big Dependent Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 673-688, October.
    13. John H. Park & Burak Kazaz & Scott Webster, 2018. "Surface vs. Air Shipment of Humanitarian Goods under Demand Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 27(5), pages 928-948, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camila Pareja Yale & Hugo Tsugunobu Yoshida Yoshizaki & Luiz Paulo Fávero, 2022. "A New Zero-Inflated Negative Binomial Multilevel Model for Forecasting the Demand of Disaster Relief Supplies in the State of Sao Paulo, Brazil," Mathematics, MDPI, vol. 10(22), pages 1-11, November.
    2. Brielle Lillywhite & Gregor Wolbring, 2022. "Emergency and Disaster Management, Preparedness, and Planning (EDMPP) and the ‘Social’: A Scoping Review," Sustainability, MDPI, vol. 14(20), pages 1-50, October.
    3. Milad Zamanifar & Timo Hartmann, 2020. "Optimization-based decision-making models for disaster recovery and reconstruction planning of transportation networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1-25, October.
    4. Xiaoxin Zhu & David Regan & Baiqing Sun, 2022. "Does exploring the characteristics of emergency supplies really matter for disaster response operations?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 175-189, January.
    5. Shao, Jianfang & Liang, Changyong & Liu, Yujia & Xu, Jian & Zhao, Shuping, 2021. "Relief demand forecasting based on intuitionistic fuzzy case-based reasoning," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    6. Xiaoxin Zhu & Yanyan Wang & David Regan & Baiqing Sun, 2020. "A Quantitative Study on Crucial Food Supplies after the 2011 Tohoku Earthquake Based on Time Series Analysis," IJERPH, MDPI, vol. 17(19), pages 1-13, September.
    7. Mandeep Kaur & Pankaj Deep Kaur & Sandeep Kumar Sood, 2021. "Energy efficient IoT-based cloud framework for early flood prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2053-2076, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Kai & Jiang, Yiping & Yuan, Yufei & Zhao, Lindu, 2015. "Modeling multiple humanitarian objectives in emergency response to large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 1-17.
    2. Altay, Nezih & Narayanan, Arunachalam, 2022. "Forecasting in humanitarian operations: Literature review and research needs," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1234-1244.
    3. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel & Yi, Wenqi & Yang, Kun, 2021. "A stochastic optimization model for staged hospital evacuation during hurricanes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    4. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    5. Cailin Wang & Jidong Wu & Xin He & Mengqi Ye & Wenhui Liu & Rumei Tang, 2018. "Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
    6. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    7. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    8. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    9. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    10. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    11. Gaalman, Gerard & Disney, Stephen M., 2009. "On bullwhip in a family of order-up-to policies with ARMA(2,2) demand and arbitrary lead-times," International Journal of Production Economics, Elsevier, vol. 121(2), pages 454-463, October.
    12. Chen, Jingxu & Wang, Shuaian & Liu, Zhiyuan & Guo, Yanyong, 2018. "Network-based optimization modeling of manhole setting for pipeline transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 38-55.
    13. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    14. Davis, Lauren B. & Samanlioglu, Funda & Qu, Xiuli & Root, Sarah, 2013. "Inventory planning and coordination in disaster relief efforts," International Journal of Production Economics, Elsevier, vol. 141(2), pages 561-573.
    15. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    16. Ouyang, Yanfeng & Daganzo, Carlos, 2008. "Robust tests for the bullwhip effect in supply chains with stochastic dynamics," European Journal of Operational Research, Elsevier, vol. 185(1), pages 340-353, February.
    17. Liu, Ming & Zhang, Zhe & Zhang, Ding, 2017. "Logistics planning for hospital pharmacy trusteeship under a hybrid of uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 201-215.
    18. Liu, Bingsheng & Sheu, Jiuh-Biing & Zhao, Xue & Chen, Yuan & Zhang, Wei, 2020. "Decision making on post-disaster rescue routing problems from the rescue efficiency perspective," European Journal of Operational Research, Elsevier, vol. 286(1), pages 321-335.
    19. Yanfeng Ouyang & Carlos Daganzo, 2006. "Characterization of the Bullwhip Effect in Linear, Time-Invariant Supply Chains: Some Formulae and Tests," Management Science, INFORMS, vol. 52(10), pages 1544-1556, October.
    20. Sheu, Jiuh-Biing, 2014. "Post-disaster relief–service centralized logistics distribution with survivor resilience maximization," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 288-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:97:y:2019:i:1:d:10.1007_s11069-019-03626-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.