IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v652y2024ics0378437124005557.html
   My bibliography  Save this article

A combined framework to explore cryptocurrency volatility and dependence using multivariate GARCH and Copula modeling

Author

Listed:
  • Queiroz, R.G.S.
  • Kristoufek, L.
  • David, S.A.

Abstract

During the last years, cryptocurrencies have been increasingly becoming a relevant subject of academic researchers and investors. This paper adopts a novel framework that combines a multivariate Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) and Copula modeling in a two-stage approach to analyze the cryptocurrency volatility dynamics. By combining the aforementioned techniques, on top of showing that price movements in one cryptocurrency can significantly influence others, the use of copulas highlight how these effects can vary across different parts of distributions and thus for different types of events with respect to their extreme nature. The interconnectedness complexity should be taken into consideration when managing risk in portfolio and constructing relevant models.

Suggested Citation

  • Queiroz, R.G.S. & Kristoufek, L. & David, S.A., 2024. "A combined framework to explore cryptocurrency volatility and dependence using multivariate GARCH and Copula modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
  • Handle: RePEc:eee:phsmap:v:652:y:2024:i:c:s0378437124005557
    DOI: 10.1016/j.physa.2024.130046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124005557
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Weide, R. van der, 2002. "Generalized Orthogonal GARCH. A Multivariate GARCH model," CeNDEF Working Papers 02-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    2. Jinan Liu & Apostolos Serletis, 2019. "Volatility in the Cryptocurrency Market," Open Economies Review, Springer, vol. 30(4), pages 779-811, September.
    3. Rhenan G. S. Queiroz & Sergio A. David, 2023. "Performance of the Realized-GARCH Model against Other GARCH Types in Predicting Cryptocurrency Volatility," Risks, MDPI, vol. 11(12), pages 1-13, December.
    4. Toan Luu Duc Huynh, 2019. "Spillover Risks on Cryptocurrency Markets: A Look from VAR-SVAR Granger Causality and Student’s-t Copulas," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    5. Ines Fortin & Christoph Kuzmics, 2002. "Tail‐dependence in stock‐return pairs," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 11(2), pages 89-107, April.
    6. Jinan Liu & Apostolos Serletis, 2019. "Volatility in the Cryptocurrency Market," Open Economies Review, Springer, vol. 30(4), pages 779-811, September.
    7. Kristoufek, Ladislav & Bouri, Elie, 2023. "Exploring sources of statistical arbitrage opportunities among Bitcoin exchanges," Finance Research Letters, Elsevier, vol. 51(C).
    8. Dante Miller & Jong-Min Kim, 2021. "Univariate and Multivariate Machine Learning Forecasting Models on the Price Returns of Cryptocurrencies," JRFM, MDPI, vol. 14(10), pages 1-10, October.
    9. Goodell, John W. & Goutte, Stephane, 2021. "Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 38(C).
    10. Richard J. McGee & Jose Olmo, 2022. "Optimal characteristic portfolios," Quantitative Finance, Taylor & Francis Journals, vol. 22(10), pages 1853-1870, October.
    11. Apergis, Nicholas & Mustafa, Ghulam & Malik, Shafaq, 2023. "The role of the COVID-19 pandemic in US market volatility: Evidence from the VIX index," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 27-35.
    12. Paulo Ferreira & Éder Pereira, 2019. "Contagion Effect in Cryptocurrency Market," JRFM, MDPI, vol. 12(3), pages 1-8, July.
    13. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    16. Andersen, Torben G. & Archakov, Ilya & Cebiroglu, Gökhan & Hautsch, Nikolaus, 2022. "Local mispricing and microstructural noise: A parametric perspective," Journal of Econometrics, Elsevier, vol. 230(2), pages 510-534.
    17. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    19. Conlon, Thomas & Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2024. "Bitcoin forks: What drives the branches?," Research in International Business and Finance, Elsevier, vol. 69(C).
    20. Kyriazis, Nikolaos & Papadamou, Stephanos & Tzeremes, Panayiotis & Corbet, Shaen, 2023. "The differential influence of social media sentiment on cryptocurrency returns and volatility during COVID-19," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 307-317.
    21. Basher, Syed Abul & Sadorsky, Perry, 2016. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," Energy Economics, Elsevier, vol. 54(C), pages 235-247.
    22. Brian M. Lucey & Michael Dowling, 2005. "The Role of Feelings in Investor Decision‐Making," Journal of Economic Surveys, Wiley Blackwell, vol. 19(2), pages 211-237, April.
    23. Yue Peng & Wing Ng, 2012. "Analysing financial contagion and asymmetric market dependence with volatility indices via copulas," Annals of Finance, Springer, vol. 8(1), pages 49-74, February.
    24. Nikita Moiseev & Aleksander Sorokin & Natalya Zvezdina & Alexey Mikhaylov & Lyubov Khomyakova & Mir Sayed Shah Danish, 2021. "Credit Risk Theoretical Model on the Base of DCC-GARCH in Time-Varying Parameters Framework," Mathematics, MDPI, vol. 9(19), pages 1-12, September.
    25. Fernandes, Leonardo H.S. & Bouri, Elie & Silva, José W.L. & Bejan, Lucian & de Araujo, Fernando H.A., 2022. "The resilience of cryptocurrency market efficiency to COVID-19 shock," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    26. Bouri, Elie & Shahzad, Syed Jawad Hussain & Roubaud, David & Kristoufek, Ladislav & Lucey, Brian, 2020. "Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 156-164.
    27. Leopoldo Catania & Stefano Grassi & Francesco Ravazzolo, 2018. "Forecasting Cryptocurrencies Financial Time Series," Working Papers No 5/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    28. Georgia Zournatzidou & Ioannis Mallidis & Dimitrios Farazakis & Christos Floros, 2024. "Enhancing Bitcoin Price Volatility Estimator Predictions: A Four-Step Methodological Approach Utilizing Elastic Net Regression," Mathematics, MDPI, vol. 12(9), pages 1-15, May.
    29. Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    30. Apostolos Ampountolas, 2022. "Cryptocurrencies Intraday High-Frequency Volatility Spillover Effects Using Univariate and Multivariate GARCH Models," IJFS, MDPI, vol. 10(3), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    2. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    3. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
    4. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    5. Tarchella, Salma & Khalfaoui, Rabeh & Hammoudeh, Shawkat, 2024. "The safe haven, hedging, and diversification properties of oil, gold, and cryptocurrency for the G7 equity markets: Evidence from the pre- and post-COVID-19 periods," Research in International Business and Finance, Elsevier, vol. 67(PB).
    6. Jiang, Yonghong & Lie, Jiayi & Wang, Jieru & Mu, Jinqi, 2021. "Revisiting the roles of cryptocurrencies in stock markets: A quantile coherency perspective," Economic Modelling, Elsevier, vol. 95(C), pages 21-34.
    7. Nikolaos A. Kyriazis, 2020. "Is Bitcoin Similar to Gold? An Integrated Overview of Empirical Findings," JRFM, MDPI, vol. 13(5), pages 1-19, May.
    8. Mohamed Yousfi & Abderrazak Dhaoui & Houssam Bouzgarrou, 2021. "Risk Spillover during the COVID-19 Global Pandemic and Portfolio Management," JRFM, MDPI, vol. 14(5), pages 1-29, May.
    9. Fernandes, Marcelo & de Sa Mota, Bernardo & Rocha, Guilherme, 2005. "A multivariate conditional autoregressive range model," Economics Letters, Elsevier, vol. 86(3), pages 435-440, March.
    10. Liu, Zhenhua & Tseng, Hui-Kuan & Wu, Jy S. & Ding, Zhihua, 2020. "Implied volatility relationships between crude oil and the U.S. stock markets: Dynamic correlation and spillover effects," Resources Policy, Elsevier, vol. 66(C).
    11. Alessio Brini & Jimmie Lenz, 2024. "A Comparison of Cryptocurrency Volatility-benchmarking New and Mature Asset Classes," Papers 2404.04962, arXiv.org.
    12. Akhtaruzzaman, Md & Boubaker, Sabri & Lucey, Brian M. & Sensoy, Ahmet, 2021. "Is gold a hedge or a safe-haven asset in the COVID–19 crisis?," Economic Modelling, Elsevier, vol. 102(C).
    13. Bouri, Elie & Gabauer, David & Gupta, Rangan & Tiwari, Aviral Kumar, 2021. "Volatility connectedness of major cryptocurrencies: The role of investor happiness," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    14. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    15. Francq, Christian & Zakoian, Jean-Michel, 2014. "Estimating multivariate GARCH and stochastic correlation models equation by equation," MPRA Paper 54250, University Library of Munich, Germany.
    16. Pal, Debdatta & Mitra, Subrata K., 2019. "Hedging bitcoin with other financial assets," Finance Research Letters, Elsevier, vol. 30(C), pages 30-36.
    17. Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
    18. Jin, Jiayu & Han, Liyan & Wu, Lei & Zeng, Hongchao, 2020. "The hedging effectiveness of global sectors in emerging and developed stock markets," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 92-117.
    19. Rita Pimentel & Morten Risstad & Sjur Westgaard, 2022. "Predicting interest rate distributions using PCA & quantile regression," Digital Finance, Springer, vol. 4(4), pages 291-311, December.
    20. Raza, Naveed & Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Syed Ali, 2018. "Do commodities effectively hedge real estate risk? A multi-scale asymmetric DCC approach," Resources Policy, Elsevier, vol. 57(C), pages 10-29.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:652:y:2024:i:c:s0378437124005557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.