IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v541y2020ics0378437119318217.html
   My bibliography  Save this article

A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series

Author

Listed:
  • Ren, Weijie
  • Li, Baisong
  • Han, Min

Abstract

The causality analysis is an important research topic in time series data mining. Granger causality analysis is a powerful method that determines cause and effect based on predictability. However, the traditional Granger causality is limited to analyzing linear causality between bivariate time series, because it is based on vector autoregressive models. In this paper, we propose a novel method, named Hilbert–Schmidt independence criterion Lasso Granger causality (HSIC-Lasso-GC), for revealing nonlinear causality between multivariate time series. Firstly, for each time series, we perform stationarity test and state space reconstruction to extract the historical information. Then, we build a HSIC-Lasso model of all input variables and output variable, where the optimal model is selected by generalized information criterion. Finally, according to the significance test, we get the causality analysis results from all input variables to output variable. In the simulations, we use two benchmark datasets and two actual datasets to test the effectiveness of the proposed method. The results show that the proposed method can effectively analyze nonlinear causality between multivariate time series.

Suggested Citation

  • Ren, Weijie & Li, Baisong & Han, Min, 2020. "A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
  • Handle: RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119318217
    DOI: 10.1016/j.physa.2019.123245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119318217
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angeliki Papana & Catherine Kyrtsou & Dimitris Kugiumtzis & Cees Diks, 2016. "Detecting Causality in Non-stationary Time Series Using Partial Symbolic Transfer Entropy: Evidence in Financial Data," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 341-365, March.
    2. Hassani, Hossein & Huang, Xu & Gupta, Rangan & Ghodsi, Mansi, 2016. "Does sunspot numbers cause global temperatures? A reconsideration using non-parametric causality tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 54-65.
    3. Fenghua Wen & Jihong Xiao & Chuangxia Huang & Xiaohua Xia, 2018. "Interaction between oil and US dollar exchange rate: nonlinear causality, time-varying influence and structural breaks in volatility," Applied Economics, Taylor & Francis Journals, vol. 50(3), pages 319-334, January.
    4. Rafindadi, Abdulkadir Abdulrashid, 2016. "Does the need for economic growth influence energy consumption and CO2 emissions in Nigeria? Evidence from the innovation accounting test," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1209-1225.
    5. Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
    6. Yin, Libo & Ma, Xiyuan, 2018. "Causality between oil shocks and exchange rate: A Bayesian, graph-based VAR approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 434-453.
    7. Yang, Lixiong & Lee, Chingnun & Su, Jen-Je, 2017. "Behavior of the standard Dickey–Fuller test when there is a Fourier-form break under the null hypothesis," Economics Letters, Elsevier, vol. 159(C), pages 128-133.
    8. Huang, Xu & Hassani, Hossein & Ghodsi, Mansi & Mukherjee, Zinnia & Gupta, Rangan, 2017. "Do trend extraction approaches affect causality detection in climate change studies?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 604-624.
    9. repec:taf:jnlbes:v:30:y:2012:i:2:p:275-287 is not listed on IDEAS
    10. Rafindadi, Abdulkadir Abdulrashid & Ozturk, Ilhan, 2017. "Impacts of renewable energy consumption on the German economic growth: Evidence from combined cointegration test," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1130-1141.
    11. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    12. Papana, Angeliki & Kyrtsou, Catherine & Kugiumtzis, Dimitris & Diks, Cees, 2017. "Financial networks based on Granger causality: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 65-73.
    13. Wang, Qizhen, 2019. "Multifractal characterization of air polluted time series in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 167-180.
    14. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    15. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    16. Rafindadi, Abdulkadir Abdulrashid & Ozturk, Ilhan, 2016. "Effects of financial development, economic growth and trade on electricity consumption: Evidence from post-Fukushima Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1073-1084.
    17. Nazlioglu, Saban & Soytas, Ugur, 2011. "World oil prices and agricultural commodity prices: Evidence from an emerging market," Energy Economics, Elsevier, vol. 33(3), pages 488-496, May.
    18. Zhang, Yiyun & Li, Runze & Tsai, Chih-Ling, 2010. "Regularization Parameter Selections via Generalized Information Criterion," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 312-323.
    19. Bai, Zhidong & Wong, Wing-Keung & Zhang, Bingzhi, 2010. "Multivariate linear and nonlinear causality tests," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 5-17.
    20. Huang, Xu & Maçaira, Paula Medina & Hassani, Hossein & Cyrino Oliveira, Fernando Luiz & Dhesi, Gurjeet, 2019. "Hydrological natural inflow and climate variables: Time and frequency causality analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 480-495.
    21. Rafindadi, Abdulkadir Abdulrashid & Ozturk, Ilhan, 2015. "Natural gas consumption and economic growth nexus: Is the 10th Malaysian plan attainable within the limits of its resource?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1221-1232.
    22. Cees Diks & Marcin Wolski, 2016. "Nonlinear Granger Causality: Guidelines for Multivariate Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1333-1351, November.
    23. Nazlioglu, Saban, 2011. "World oil and agricultural commodity prices: Evidence from nonlinear causality," Energy Policy, Elsevier, vol. 39(5), pages 2935-2943, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Dewei & Ren, Weijie & Han, Min, 2022. "A two-stage causality method for time series prediction based on feature selection and momentary conditional independence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    2. Esra Alp Coşkun & Hakan Kahyaoglu & Chi Keung Marco Lau, 2023. "Which return regime induces overconfidence behavior? Artificial intelligence and a nonlinear approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-34, December.
    3. Wang, Lu & Ruan, Hang & Hong, Yanran & Luo, Keyu, 2023. "Detecting the hidden asymmetric relationship between crude oil and the US dollar: A novel neural Granger causality method," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhifang He & Fangzhao Zhou, 2018. "Time-varying and asymmetric effects of the oil-specific demand shock on investor sentiment," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-18, August.
    2. Jinghua Wang & Geoffrey Ngene, 2018. "Symmetric and asymmetric nonlinear causalities between oil prices and the U.S. economic sectors," Review of Quantitative Finance and Accounting, Springer, vol. 51(1), pages 199-218, July.
    3. Palazzi, Rafael Baptista & Meira, Erick & Klotzle, Marcelo Cabus, 2022. "The sugar-ethanol-oil nexus in Brazil: Exploring the pass-through of international commodity prices to national fuel prices," Journal of Commodity Markets, Elsevier, vol. 28(C).
    4. Xu Xiaojie, 2018. "Linear and Nonlinear Causality between Corn Cash and Futures Prices," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 16(2), pages 1-16, November.
    5. Xiaojuan He & Dervis Kirikkaleli & Melike Torun & Zecheng Li, 2021. "Modeling Economic Risk in the QISMUT Countries: Evidence From Nonlinear Cointegration Tests," SAGE Open, , vol. 11(4), pages 21582440211, October.
    6. Adeosun, Opeoluwa Adeniyi & Tabash, Mosab I. & Anagreh, Suhaib, 2022. "Oil price and economic performance: Additional evidence from advanced economies," Resources Policy, Elsevier, vol. 77(C).
    7. Piotr FISZEDER & Witold ORZESZKO, 2018. "Nonlinear Granger causality between grains and livestock," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(7), pages 328-336.
    8. De Vita, Glauco & Trachanas, Emmanouil, 2016. "‘Nonlinear causality between crude oil price and exchange rate: A comparative study of China and India’ — A failed replication (negative Type 1 and Type 2)," Energy Economics, Elsevier, vol. 56(C), pages 150-160.
    9. Andreasson, Pierre & Bekiros, Stelios & Nguyen, Duc Khuong & Uddin, Gazi Salah, 2016. "Impact of speculation and economic uncertainty on commodity markets," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 115-127.
    10. Mario Gómez & Aitor Ciarreta & Ainhoa Zarraga, 2018. "Linear and Nonlinear Causality between Energy Consumption and Economic Growth: The Case of Mexico 1965–2014," Energies, MDPI, vol. 11(4), pages 1-15, March.
    11. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    12. Ahmed Ali & Granberg Mark & Uddin Gazi Salah & Troster Victor, 2022. "Asymmetric dynamics between uncertainty and unemployment flows in the United States," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 155-172, February.
    13. Zhao, Lili & Wen, Fenghua & Wang, Xiong, 2020. "Interaction among China carbon emission trading markets: Nonlinear Granger causality and time-varying effect," Energy Economics, Elsevier, vol. 91(C).
    14. He, Zhifang, 2020. "Dynamic impacts of crude oil price on Chinese investor sentiment: Nonlinear causality and time-varying effect," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 131-153.
    15. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    16. Ajmi, Ahdi N. & Gupta, Rangan & Kruger, Monique & Schoeman, Nicola & Walters, Leoné, 2016. "The Nonparametric Relationship between Oil and South African Agricultural Prices - La relazione nonparametrica tra il prezzo del petrolio e i prezzi dei prodotti agricoli in Sud Africa," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 69(2), pages 93-112.
    17. Choudhry, Taufiq & Hassan, Syed S. & Shabi, Sarosh, 2015. "Relationship between gold and stock markets during the global financial crisis: Evidence from nonlinear causality tests," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 247-256.
    18. Troster, Victor & Bouri, Elie & Roubaud, David, 2019. "A quantile regression analysis of flights-to-safety with implied volatilities," Resources Policy, Elsevier, vol. 62(C), pages 482-495.
    19. Omane-Adjepong, Maurice & Alagidede, Imhotep Paul, 2019. "Multiresolution analysis and spillovers of major cryptocurrency markets," Research in International Business and Finance, Elsevier, vol. 49(C), pages 191-206.
    20. Fowowe, Babajide, 2016. "Do oil prices drive agricultural commodity prices? Evidence from South Africa," Energy, Elsevier, vol. 104(C), pages 149-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119318217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.