IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v438y2015icp178-187.html
   My bibliography  Save this article

Application of artificial neural network models and principal component analysis method in predicting stock prices on Tehran Stock Exchange

Author

Listed:
  • Zahedi, Javad
  • Rounaghi, Mohammad Mahdi

Abstract

Stock price changes are receiving the increasing attention of investors, especially those who have long-term aims. The present study intends to assess the predictability of prices on Tehran Stock Exchange through the application of artificial neural network models and principal component analysis method and using 20 accounting variables. Finally, goodness of fit for principal component analysis has been determined through real values, and the effective factors in Tehran Stock Exchange prices have been accurately predicted and modeled in the form of a new pattern consisting of all variables.

Suggested Citation

  • Zahedi, Javad & Rounaghi, Mohammad Mahdi, 2015. "Application of artificial neural network models and principal component analysis method in predicting stock prices on Tehran Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 178-187.
  • Handle: RePEc:eee:phsmap:v:438:y:2015:i:c:p:178-187
    DOI: 10.1016/j.physa.2015.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115005932
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koulouriotis, D.E. & Emiris, D.M. & Diakoulakis, I.E. & Zopounidis, C., 2002. "Behavioristic Analysis And Comparative Evaluation Of Intelligent Methodologies For Short-Term Stock Price Forecasting," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 0(2), pages 23-57, November.
    2. Yi-Hsien Wang, 2009. "Using neural network to forecast stock index option price: a new hybrid GARCH approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(5), pages 833-843, September.
    3. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    4. Duan, Wen-Qi & Stanley, H. Eugene, 2011. "Cross-correlation and the predictability of financial return series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 290-296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hemmat Esfe, Mohammad & Rostamian, Hossein & Esfandeh, Saeed & Afrand, Masoud, 2018. "Modeling and prediction of rheological behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant by artificial neural network using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 625-634.
    2. Rashmi Chaudhary & Priti Bakhshi & Hemendra Gupta, 2020. "Volatility in International Stock Markets: An Empirical Study during COVID-19," JRFM, MDPI, vol. 13(9), pages 1-17, September.
    3. Rounaghi, Mohammad Mahdi & Nassir Zadeh, Farzaneh, 2016. "Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 10-21.
    4. Nahida Akter & Ashadun Nobi, 2018. "Investigation of the Financial Stability of S&P 500 Using Realized Volatility and Stock Returns Distribution," JRFM, MDPI, vol. 11(2), pages 1-10, April.
    5. J. Gavin & M. Crane, 2021. "Community Detection in Cryptocurrencies with Potential Applications to Portfolio Diversification," Papers 2108.09763, arXiv.org.
    6. Mahdi Moradi & Mehdi Jabbari Nooghabi & Mohammad Mahdi Rounaghi, 2021. "Investigation of fractal market hypothesis and forecasting time series stock returns for Tehran Stock Exchange and London Stock Exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 662-678, January.
    7. Rostamian, Hossein & Lotfollahi, Mohammad Nader, 2020. "Statistical modeling of aspirin solubility in organic solvents by Response Surface Methodology and Artificial Neural Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. U, JuHyok & Lu, PengYu & Kim, ChungSong & Ryu, UnSok & Pak, KyongSok, 2020. "A new LSTM based reversal point prediction method using upward/downward reversal point feature sets," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Mohammad Arashi & Mohammad Mahdi Rounaghi, 2022. "Analysis of market efficiency and fractal feature of NASDAQ stock exchange: Time series modeling and forecasting of stock index using ARMA-GARCH model," Future Business Journal, Springer, vol. 8(1), pages 1-12, December.
    10. Jian Huang & Huazhang Liu, 2019. "Examination and Modification of Multi-Factor Model in Explaining Stock Excess Return with Hybrid Approach in Empirical Study of Chinese Stock Market," JRFM, MDPI, vol. 12(2), pages 1-30, May.
    11. Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
    12. Elfadil A. Mohamed & Ibrahim Elsiddig Ahmed & Riyadh Mehdi & Hanan Hussain, 2021. "Impact of corporate performance on stock price predictions in the UAE markets: Neuro‐fuzzy model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 52-71, January.
    13. Manel Hamdi & Walid Chkili, 2019. "An artificial neural network augmented GARCH model for Islamic stock market volatility: Do asymmetry and long memory matter?," Working Papers 13, Economic Research Forum, revised 21 Aug 2019.
    14. Sujin Pyo & Jaewook Lee & Mincheol Cha & Huisu Jang, 2017. "Predictability of machine learning techniques to forecast the trends of market index prices: Hypothesis testing for the Korean stock markets," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-17, November.
    15. Zhang, Yongjie & Chu, Gang & Shen, Dehua, 2021. "The role of investor attention in predicting stock prices: The long short-term memory networks perspective," Finance Research Letters, Elsevier, vol. 38(C).
    16. Arezoo Hatefi Ghahfarrokhi & Mehrnoush Shamsfard, 2019. "Tehran Stock Exchange Prediction Using Sentiment Analysis of Online Textual Opinions," Papers 1909.03792, arXiv.org, revised Sep 2019.
    17. Arezoo Hatefi Ghahfarrokhi & Mehrnoush Shamsfard, 2020. "Tehran stock exchange prediction using sentiment analysis of online textual opinions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(1), pages 22-37, January.
    18. Samitas, Aristeidis & Kampouris, Elias & Kenourgios, Dimitris, 2020. "Machine learning as an early warning system to predict financial crisis," International Review of Financial Analysis, Elsevier, vol. 71(C).
    19. Liu, Keyan & Zhou, Jianan & Dong, Dayong, 2021. "Improving stock price prediction using the long short-term memory model combined with online social networks," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rounaghi, Mohammad Mahdi & Abbaszadeh, Mohammad Reza & Arashi, Mohammad, 2015. "Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 625-633.
    2. Kanjamapornkul, K. & Pinčák, Richard & Bartoš, Erik, 2016. "The study of Thai stock market across the 2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 117-133.
    3. Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
    4. Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
    5. Tania Morris & Jules Comeau, 2020. "Portfolio creation using artificial neural networks and classification probabilities: a Canadian study," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 133-163, June.
    6. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    7. Wang, Minggang & Tian, Lixin & Zhou, Peng, 2018. "A novel approach for oil price forecasting based on data fluctuation network," Energy Economics, Elsevier, vol. 71(C), pages 201-212.
    8. Ma, Feng & Wei, Yu & Huang, Dengshi & Zhao, Lin, 2013. "Cross-correlations between West Texas Intermediate crude oil and the stock markets of the BRIC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5356-5368.
    9. Hakob GRIGORYAN, 2015. "Stock Market Prediction using Artificial Neural Networks. Case Study of TAL1T, Nasdaq OMX Baltic Stock," Database Systems Journal, Academy of Economic Studies - Bucharest, Romania, vol. 6(2), pages 14-23, October.
    10. Chaima Kooli & Raoudha Trabelsi & Fethi Tlili, 2018. "The Impact of Accounting Disclosure On Emerging Stock Market Prediction in an Unstable Socio-Political Context," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 17(3), pages 313-329, September.
    11. Vinci Chow, 2017. "Predicting Auction Price of Vehicle License Plate with Deep Recurrent Neural Network," Papers 1701.08711, arXiv.org, revised Oct 2019.
    12. Manuel Dorado-Moreno & Antonio Sianes & César Hervás-Martínez, 2016. "From outside to hyper-globalisation: an Artificial Neural Network ordinal classifier applied to measure the extent of globalisation," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 549-576, March.
    13. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    14. Sergey SVESHNIKOV & Victor BOCHARNIKOV, 2009. "Eforecasting Financial Indexes With Model Of Composite Events Influence," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 4(3(9)_Fall).
    15. Yu-Min Lian & Jia-Ling Chen & Hsueh-Chien Cheng, 2022. "Predicting Bitcoin Prices via Machine Learning and Time Series Models," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(5), pages 1-2.
    16. Shuyun Ren & Hau-Ling Chan & Tana Siqin, 2020. "Demand forecasting in retail operations for fashionable products: methods, practices, and real case study," Annals of Operations Research, Springer, vol. 291(1), pages 761-777, August.
    17. Tseng-Chung Tang, 2010. "Effects of announcements of reorganization outcome," Applied Economics, Taylor & Francis Journals, vol. 42(9), pages 1113-1124.
    18. Brad S. Trinkle, 2005. "Forecasting annual excess stock returns via an adaptive network‐based fuzzy inference system," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 13(3), pages 165-177, July.
    19. Chia-Cheng Chen & Yisheng Liu & Ting-Hsin Hsu, 2019. "An Analysis on Investment Performance of Machine Learning: An Empirical Examination on Taiwan Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 9(4), pages 1-10.
    20. Wang, Jie & Wang, Jun, 2016. "Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations," Energy, Elsevier, vol. 102(C), pages 365-374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:438:y:2015:i:c:p:178-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.