Feature selection with annealing for forecasting financial time series
Author
Abstract
Suggested Citation
DOI: 10.1186/s40854-024-00617-3
Download full text from publisher
References listed on IDEAS
- Bação Pedro & Duarte António Portugal & Sebastião Helder & Redzepagic Srdjan, 2018.
"Information Transmission Between Cryptocurrencies: Does Bitcoin Rule the Cryptocurrency World?,"
Scientific Annals of Economics and Business, Sciendo, vol. 65(2), pages 97-117, June.
- Pedro Bação & António Portugal Duarte & Helder Sebastião & Srdjan Redzepagic, 2018. "Information Transmission Between Cryptocurrencies: Does Bitcoin Rule the Cryptocurrency World?," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 65(2), pages 97-117, June.
- Pedro Bação & António Portugal Duarte & Hélder Sebastião & Srdjan Redzepagic, 2018. "Information Transmission Between Cryptocurrencies: Does Bitcoin Rule the Cryptocurrency World?," CeBER Working Papers 2018-06, Centre for Business and Economics Research (CeBER), University of Coimbra.
- Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019.
"Bitcoin price forecasting with neuro-fuzzy techniques,"
European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
- George S. Atsalakis & Ioanna G. Atsalaki & Fotios Pasiouras & Constantin Zopounidis, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," Post-Print hal-02879928, HAL.
- Deniz Can Yıldırım & Ismail Hakkı Toroslu & Ugo Fiore, 2021. "Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-36, December.
- Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
- Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2019. "Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market," Papers 1901.04967, arXiv.org.
- Jin-Bom Han & Sun-Hak Kim & Myong-Hun Jang & Kum-Sun Ri, 2020. "Using Genetic Algorithm and NARX Neural Network to Forecast Daily Bitcoin Price," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 337-353, August.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
- Luiz G. A. Alves & Higor Y. D. Sigaki & Matjaz Perc & Haroldo V. Ribeiro, 2020. "Collective dynamics of stock market efficiency," Papers 2011.14809, arXiv.org.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
- Syed Abul, Basher & Perry, Sadorsky, 2022. "Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?," MPRA Paper 113293, University Library of Munich, Germany.
- Steve Hyun & Jimin Lee & Jong-Min Kim & Chulhee Jun, 2019. "What Coins Lead in the Cryptocurrency Market: Using Copula and Neural Networks Models," JRFM, MDPI, vol. 12(3), pages 1-14, August.
- Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
- Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
- Dev Shah & Haruna Isah & Farhana Zulkernine, 2019. "Stock Market Analysis: A Review and Taxonomy of Prediction Techniques," IJFS, MDPI, vol. 7(2), pages 1-22, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
- Marielle de Jong & Lauren Stagnol, 2016.
"A fundamental bond index including solvency criteria,"
Journal of Asset Management, Palgrave Macmillan, vol. 17(4), pages 280-294, July.
- Marielle de Jong & Lauren Stagnol, 2016. "A fundamental bond index including solvency criteria," Post-Print hal-01410662, HAL.
- Iotti, Mattia, 2023. "Financial evaluation and credit access of agricultural firms," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 25(2), October.
- Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
- Mattia Iotti, 2023. "Financial evaluation and credit access of agricultural firms," Economia agro-alimentare, FrancoAngeli Editore, vol. 25(2), pages 31-67.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
- Le, Hong Hanh & Viviani, Jean-Laurent, 2018.
"Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios,"
Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
- Hong Hanh Le & Jean-Laurent Viviani, 2018. "Predicting bank failure: An improvement by implementing machine learning approach on classical financial ratios," Post-Print halshs-01615106, HAL.
- Arati Kale & Devendra Kale & Sriram Villupuram, 2024. "Decomposition of risk for small size and low book-to-market stocks," Journal of Asset Management, Palgrave Macmillan, vol. 25(1), pages 96-112, February.
- Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
- Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.
- Noora Alzayed & Rasol Eskandari & Hassan Yazdifar, 2023. "Bank failure prediction: corporate governance and financial indicators," Review of Quantitative Finance and Accounting, Springer, vol. 61(2), pages 601-631, August.
- David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
- Juan García Lara & Beatriz Osma & Evi Neophytou, 2009. "Earnings quality in ex‐post failed firms," Accounting and Business Research, Taylor & Francis Journals, vol. 39(2), pages 119-138.
- Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
- M. A. Lagesh & Maram Srikanth & Debashis Acharya, 2018. "Corporate Performance during Business Cycles: Evidence from Indian Manufacturing Firms," Global Business Review, International Management Institute, vol. 19(5), pages 1261-1274, October.
- Anton Gerunov, 2023. "Modern Approaches To Forecasting Firm Default Rates Over The Short To Medium Term: An Application To A Panel Of Polish Companies," Yearbook of the Faculty of Economics and Business Administration, Sofia University, Faculty of Economics and Business Administration, Sofia University St Kliment Ohridski - Bulgaria, vol. 22(1), pages 5-15, October.
- Vidimlić Selma, 2019. "Innovated Altman’s Model as a Predictor of Malfunctioning of Small and Medium-Sized Businesses in Bosnia and Herzegovina," Economic Themes, Sciendo, vol. 57(1), pages 21-33, March.
More about this item
Keywords
Financial time-series forecasting; Feature selection; Machine learning; Cryptocurrency; Stock market; Return forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-024-00617-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.