IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model

Listed author(s):
  • Rounaghi, Mohammad Mahdi
  • Nassir Zadeh, Farzaneh
Registered author(s):

    We investigated the presence and changes in, long memory features in the returns and volatility dynamics of S&P 500 and London Stock Exchange using ARMA model. Recently, multifractal analysis has been evolved as an important way to explain the complexity of financial markets which can hardly be described by linear methods of efficient market theory. In financial markets, the weak form of the efficient market hypothesis implies that price returns are serially uncorrelated sequences. In other words, prices should follow a random walk behavior. The random walk hypothesis is evaluated against alternatives accommodating either unifractality or multifractality. Several studies find that the return volatility of stocks tends to exhibit long-range dependence, heavy tails, and clustering. Because stochastic processes with self-similarity possess long-range dependence and heavy tails, it has been suggested that self-similar processes be employed to capture these characteristics in return volatility modeling. The present study applies monthly and yearly forecasting of Time Series Stock Returns in S&P 500 and London Stock Exchange using ARMA model. The statistical analysis of S&P 500 shows that the ARMA model for S&P 500 outperforms the London stock exchange and it is capable for predicting medium or long horizons using real known values. The statistical analysis in London Stock Exchange shows that the ARMA model for monthly stock returns outperforms the yearly. ​A comparison between S&P 500 and London Stock Exchange shows that both markets are efficient and have Financial Stability during periods of boom and bust.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116002776
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 456 (2016)
    Issue (Month): C ()
    Pages: 10-21

    as
    in new window

    Handle: RePEc:eee:phsmap:v:456:y:2016:i:c:p:10-21
    DOI: 10.1016/j.physa.2016.03.006
    Contact details of provider: Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Martin Lettau & Stijn Van Nieuwerburgh, 2008. "Reconciling the Return Predictability Evidence," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1607-1652, July.
    2. Dilip Abreu & Markus K. Brunnermeier, 2003. "Bubbles and Crashes," Econometrica, Econometric Society, vol. 71(1), pages 173-204, January.
    3. Holthausen, Robert W., 1990. "Accounting method choice : Opportunistic behavior, efficient contracting, and information perspectives," Journal of Accounting and Economics, Elsevier, vol. 12(1-3), pages 207-218, January.
    4. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    5. Frédéric Sonney, 2009. "Financial Analysts' Performance: Sector Versus Country Specialization," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2087-2131, May.
    6. Kothari, S. P., 2001. "Capital markets research in accounting," Journal of Accounting and Economics, Elsevier, vol. 31(1-3), pages 105-231, September.
    7. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & Georgios P. Kouretas, 2006. "Regime switching and artificial neural network forecasting of the Cyprus Stock Exchange daily returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 11(4), pages 371-383.
    8. Polk, Christopher & Thompson, Samuel & Vuolteenaho, Tuomo, 2006. "Cross-sectional forecasts of the equity premium," Journal of Financial Economics, Elsevier, vol. 81(1), pages 101-141, July.
    9. Immonen, Eero, 2015. "A quantitative description for efficient financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 171-181.
    10. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    11. Ferson, Wayne E & Harvey, Campbell R, 1991. "The Variation of Economic Risk Premiums," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 385-415, April.
    12. Anastassios A. Drakos & Georgios P. Kouretas & Leonidas P. Zarangas, 2010. "Forecasting financial volatility of the Athens stock exchange daily returns: an application of the asymmetric normal mixture GARCH model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 331-350.
    13. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    14. JULES H. van BINSBERGEN & RALPH S. J. KOIJEN, 2010. "Predictive Regressions: A Present-Value Approach," Journal of Finance, American Finance Association, vol. 65(4), pages 1439-1471, August.
    15. Martin Lettau, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    16. Lubos Pástor & Robert F. Stambaugh, 2009. "Predictive Systems: Living with Imperfect Predictors," Journal of Finance, American Finance Association, vol. 64(4), pages 1583-1628, August.
    17. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    18. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    19. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    20. Zahedi, Javad & Rounaghi, Mohammad Mahdi, 2015. "Application of artificial neural network models and principal component analysis method in predicting stock prices on Tehran Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 178-187.
    21. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    22. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    23. Rounaghi, Mohammad Mahdi & Abbaszadeh, Mohammad Reza & Arashi, Mohammad, 2015. "Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 625-633.
    24. Cajueiro, Daniel O. & Gogas, Periklis & Tabak, Benjamin M., 2009. "Does financial market liberalization increase the degree of market efficiency? The case of the Athens stock exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 50-57, March.
    25. Kothari, S. P. & Sabino, Jowell S. & Zach, Tzachi, 2005. "Implications of survival and data trimming for tests of market efficiency," Journal of Accounting and Economics, Elsevier, vol. 39(1), pages 129-161, February.
    26. Lee, Charles M. C., 2001. "Market efficiency and accounting research: a discussion of 'capital market research in accounting' by S.P. Kothari," Journal of Accounting and Economics, Elsevier, vol. 31(1-3), pages 233-253, September.
    27. Vega, I. & Schütte, Ch. & Conrad, T.O.F., 2016. "Finding metastable states in real-world time series with recurrence networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 1-17.
    28. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    29. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    30. Pontiff, Jeffrey & Schall, Lawrence D., 1998. "Book-to-market ratios as predictors of market returns," Journal of Financial Economics, Elsevier, vol. 49(2), pages 141-160, August.
    31. McCauley, Joseph L. & Bassler, Kevin E. & Gunaratne, Gemunu H., 2008. "Martingales, nonstationary increments, and the efficient market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3916-3920.
    32. Lim, Kian-Ping & Brooks, Robert D. & Kim, Jae H., 2008. "Financial crisis and stock market efficiency: Empirical evidence from Asian countries," International Review of Financial Analysis, Elsevier, vol. 17(3), pages 571-591, June.
    33. José M. Matías & Juan C. Reboredo, 2012. "Forecasting Performance of Nonlinear Models for Intraday Stock Returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(2), pages 172-188, March.
    34. Pinčák, Richard & Bartoš, Erik, 2015. "With string model to time series forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 135-146.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:456:y:2016:i:c:p:10-21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.