IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp1278-1294.html
   My bibliography  Save this article

Asymmetric market efficiency using the index-based asymmetric-MFDFA

Author

Listed:
  • Lee, Minhyuk
  • Song, Jae Wook
  • Kim, Sondo
  • Chang, Woojin

Abstract

We explore the asymmetric market efficiency for various countries’ stock indices using the index-based asymmetric-MFDFA. We divide market based on its trend within certain sub-period. Then, we test whether the overall, up-, and down-trend markets are efficient via the asymmetric generalized Hurst exponent. At first, we provide the criteria for testing the asymmetric market efficiency based on the Monte Carlo simulation using the Brownian motion. Secondly, we analyze the asymmetric market efficiency of 34 countries for different sub-periods by comparing the Hurst exponents of original and shuffled time series. We discover that the sources of inefficiency are different with respect to time periods by presenting the groups of countries based on the asymmetric market inefficiency. Lastly, we discuss a time-varying feature of market efficiency where the wider gap between the up- and down-trend efficiency and the stronger correlation between stock index and the asymmetric Hurst exponent are discovered during the financial crisis.

Suggested Citation

  • Lee, Minhyuk & Song, Jae Wook & Kim, Sondo & Chang, Woojin, 2018. "Asymmetric market efficiency using the index-based asymmetric-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1278-1294.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:1278-1294
    DOI: 10.1016/j.physa.2018.08.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118309671
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Jae H. & Shamsuddin, Abul, 2008. "Are Asian stock markets efficient? Evidence from new multiple variance ratio tests," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 518-532, June.
    2. Horta, Paulo & Lagoa, Sérgio & Martins, Luís, 2014. "The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 140-153.
    3. Stošić, Dusan & Stošić, Darko & Stošić, Tatijana & Eugene Stanley, H., 2015. "Multifractal properties of price change and volume change of stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 46-51.
    4. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    5. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
    6. Ladislav Kristoufek, 2012. "Fractal Markets Hypothesis And The Global Financial Crisis: Scaling, Investment Horizons And Liquidity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1-13.
    7. Mensi, Walid & Tiwari, Aviral Kumar & Yoon, Seong-Min, 2017. "Global financial crisis and weak-form efficiency of Islamic sectoral stock markets: An MF-DFA analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 135-146.
    8. Song, Jae Wook & Ko, Bonggyun & Cho, Poongjin & Chang, Woojin, 2016. "Time-varying causal network of the Korean financial system based on firm-specific risk premiums," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 287-302.
    9. Maheu, John M & McCurdy, Thomas H, 2000. "Identifying Bull and Bear Markets in Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 100-112, January.
    10. Lee, Hojin & Song, Jae Wook & Chang, Woojin, 2016. "Multifractal Value at Risk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 113-122.
    11. Sun, Xia & Chen, Huiping & Yuan, Yongzhuang & Wu, Ziqin, 2001. "Predictability of multifractal analysis of Hang Seng stock index in Hong Kong," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 473-482.
    12. Stošić, Darko & Stošić, Dusan & Stošić, Tatijana & Stanley, H. Eugene, 2015. "Multifractal analysis of managed and independent float exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 13-18.
    13. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
    14. Sun, Xia & Chen, Huiping & Wu, Ziqin & Yuan, Yongzhuang, 2001. "Multifractal analysis of Hang Seng index in Hong Kong stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 553-562.
    15. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    16. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Mensi, Walid & Kumar, Ronald Ravinesh, 2017. "Examining the efficiency and interdependence of US credit and stock markets through MF-DFA and MF-DXA approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 351-363.
    17. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    18. Kristoufek, Ladislav & Vosvrda, Miloslav, 2016. "Gold, currencies and market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 27-34.
    19. Liu, Li & Wang, Yudong & Wan, Jieqiu, 2010. "Analysis of efficiency for Shenzhen stock market: Evidence from the source of multifractality," International Review of Financial Analysis, Elsevier, vol. 19(4), pages 237-241, September.
    20. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    21. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    22. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    23. Jang, Wooseok & Lee, Junghoon & Chang, Woojin, 2011. "Currency crises and the evolution of foreign exchange market: Evidence from minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 707-718.
    24. Arshad, Shaista & Rizvi, Syed Aun R. & Ghani, Gairuzazmi Mat & Duasa, Jarita, 2016. "Investigating stock market efficiency: A look at OIC member countries," Research in International Business and Finance, Elsevier, vol. 36(C), pages 402-413.
    25. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    26. Wang, Yudong & Liu, Li & Gu, Rongbao, 2009. "Analysis of efficiency for Shenzhen stock market based on multifractal detrended fluctuation analysis," International Review of Financial Analysis, Elsevier, vol. 18(5), pages 271-276, December.
    27. Wang, Yudong & Liu, Li & Gu, Rongbao & Cao, Jianjun & Wang, Haiyan, 2010. "Analysis of market efficiency for the Shanghai stock market over time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1635-1642.
    28. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
    29. Rounaghi, Mohammad Mahdi & Nassir Zadeh, Farzaneh, 2016. "Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 10-21.
    30. Podobnik, Boris & Fu, Dongfeng & Jagric, Timotej & Grosse, Ivo & Eugene Stanley, H., 2006. "Fractionally integrated process for transition economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 465-470.
    31. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    32. Rizvi, Syed Aun R. & Dewandaru, Ginanjar & Bacha, Obiyathulla I. & Masih, Mansur, 2014. "An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 86-99.
    33. Adrian R. Pagan & Kirill A. Sossounov, 2003. "A simple framework for analysing bull and bear markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 23-46.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:1278-1294. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.