IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v95y2025ics0957178725000116.html
   My bibliography  Save this article

Technical efficiency analysis of China's water sector: A technology heterogeneity perspective

Author

Listed:
  • Tian, Yuzhen
  • Goh, Kim Huat
  • See, Kok Fong

Abstract

This study evaluates the efficiency of China's water companies using a nonoriented meta-frontier directional distance function while simultaneously considering group heterogeneities and incorporating water loss as an undesirable output. Additionally, it performs a sensitivity analysis using different directional vectors to compare water companies' efficiency. The results reveal that water-only companies have improved in closing the efficiency gap between the meta-frontier and within-group frontiers. Water-only companies are closer to the best possible production technology than are water and sewerage companies. The sensitivity analysis indicates efforts to improve input management and address the water loss within these companies. Policy implications are discussed for reducing water loss and improving China's water companies' efficiency.

Suggested Citation

  • Tian, Yuzhen & Goh, Kim Huat & See, Kok Fong, 2025. "Technical efficiency analysis of China's water sector: A technology heterogeneity perspective," Utilities Policy, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:juipol:v:95:y:2025:i:c:s0957178725000116
    DOI: 10.1016/j.jup.2025.101896
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178725000116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2025.101896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    2. Molinos-Senante, María & Sala-Garrido, Ramón, 2018. "Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics," Applied Energy, Elsevier, vol. 229(C), pages 1095-1102.
    3. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    4. Manuel Mocholi-Arce & Ramon Sala-Garrido & Maria Molinos-Senante & Alexandros Maziotis, 2022. "Measuring the eco-efficiency of the provision of drinking water by two-stage network data envelopment analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12883-12899, November.
    5. Mocholi-Arce, Manuel & Sala-Garrido, Ramon & Molinos-Senante, Maria & Maziotis, Alexandros, 2021. "Performance assessment of water companies: A metafrontier approach accounting for quality of service and group heterogeneities," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    6. María Molinos-Senante & Alexandros Maziotis, 2019. "Cost Efficiency of English and Welsh Water Companies: a Meta-Stochastic Frontier Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3041-3055, July.
    7. Picazo-Tadeo, Andres J. & Saez-Fernandez, Francisco J. & Gonzalez-Gomez, Francisco, 2008. "Does service quality matter in measuring the performance of water utilities," Utilities Policy, Elsevier, vol. 16(1), pages 30-38, March.
    8. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    9. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    10. A Zanella & A S Camanho & T G Dias, 2013. "Benchmarking countries’ environmental performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(3), pages 426-438, March.
    11. Jayanath Ananda & Nicholas Pawsey, 2019. "Benchmarking service quality in the urban water industry," Journal of Productivity Analysis, Springer, vol. 51(1), pages 55-72, February.
    12. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    13. Yin, Changjun & Hsiao, Bo & See, Kok Fong, 2024. "Efficiency analysis of China's urban water supply utilities using a dynamic multiactivity network DEA model," Structural Change and Economic Dynamics, Elsevier, vol. 71(C), pages 387-404.
    14. See, Kok Fong & Ma, Zhanxin, 2018. "Does non-revenue water affect Malaysia's water services industry productivity?," Utilities Policy, Elsevier, vol. 54(C), pages 125-131.
    15. Sala-Garrido, Ramon & Mocholi-Arce, Manuel & Maziotis, Alexandros & Molinos-Senante, María, 2023. "The carbon and production performance of water utilities: Evidence from the English and Welsh water industry," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 292-300.
    16. Oh, Dong-hyun, 2010. "A metafrontier approach for measuring an environmentally sensitive productivity growth index," Energy Economics, Elsevier, vol. 32(1), pages 146-157, January.
    17. Goh, Kim Huat & See, Kok Fong, 2023. "Incorporating nonrevenue water in the efficiency assessment of water supply utilities: A parametric enhanced hyperbolic distance function," Utilities Policy, Elsevier, vol. 81(C).
    18. Färe, Rolf & Margaritis, Dimitris & Rouse, Paul & Roshdi, Israfil, 2016. "Estimating the hyperbolic distance function: A directional distance function approach," European Journal of Operational Research, Elsevier, vol. 254(1), pages 312-319.
    19. Ngobeni, Victor & Breitenbach, Marthinus C, 2021. "Production and Scale Efficiency of South African Water Utilities: The Case of Water Boards," MPRA Paper 106242, University Library of Munich, Germany.
    20. Mocholi-Arce, Manuel & Sala-Garrido, Ramon & Molinos-Senante, Maria & Maziotis, Alexandros, 2022. "Performance assessment of the Chilean water sector: A network data envelopment analysis approach," Utilities Policy, Elsevier, vol. 75(C).
    21. Fare, Rolf, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    22. Salazar-Adams, Alejandro, 2021. "The efficiency of post-reform water utilities in Mexico," Utilities Policy, Elsevier, vol. 68(C).
    23. Huang, Tai-Hsin & Chiang, Dien-Lin & Tsai, Chao-Min, 2015. "Applying the New Metafrontier Directional Distance Function to Compare Banking Efficiencies in Central and Eastern European Countries," Economic Modelling, Elsevier, vol. 44(C), pages 188-199.
    24. Tortajada, Cecilia, 2016. "Policy dimensions of development and financing of water infrastructure: The cases of China and India," Environmental Science & Policy, Elsevier, vol. 64(C), pages 177-187.
    25. Fan Li & Michelle Andrea Phillips, 2017. "The Influence of the Regulatory Environment on Chinese Urban Water Utilities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 205-218, January.
    26. Bottasso, Anna & Conti, Maurizio & Piacenza, Massimiliano & Vannoni, Davide, 2011. "Corrigendum to "The appropriateness of the poolability assumption for multiproduct technologies: Evidence from the English water and sewerage utilities" [Int. J. Prod. Econ. 130 (2011) 112-1," International Journal of Production Economics, Elsevier, vol. 131(2), pages 763-763, June.
    27. Marta Suárez-Varela & María los Ángeles García-Valiñas & Francisco González-Gómez & Andrés J Picazo-Tadeo, 2017. "Ownership and Performance in Water Services Revisited: Does Private Management Really Outperform Public?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(8), pages 2355-2373, June.
    28. María Molinos-Senante & Manuel Mocholi-Arce & Ramón Sala-Garrido, 2016. "Efficiency Assessment of Water and Sewerage Companies: a Disaggregated Approach Accounting for Service Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4311-4328, September.
    29. Hayami, Yujiro & Ruttan, Vernon W, 1970. "Agricultural Productivity Differences Among Countries," American Economic Review, American Economic Association, vol. 60(5), pages 895-911, December.
    30. Romano, Giulia & Molinos-Senante, María & Guerrini, Andrea, 2017. "Water utility efficiency assessment in Italy by accounting for service quality: An empirical investigation," Utilities Policy, Elsevier, vol. 45(C), pages 97-108.
    31. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2014. "Potential gains from trading bad outputs: The case of U.S. electric power plants," Resource and Energy Economics, Elsevier, vol. 36(1), pages 99-112.
    32. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    33. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    34. Gidion, Dickson K. & Hong, Jin & Adams, Magdalene Z.A. & Khoveyni, Mohammad, 2019. "Network DEA models for assessing urban water utility efficiency," Utilities Policy, Elsevier, vol. 57(C), pages 48-58.
    35. Andrea Guerrini & Giulia Romano & Bettina Campedelli, 2013. "Economies of Scale, Scope, and Density in the Italian Water Sector: A Two-Stage Data Envelopment Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4559-4578, October.
    36. Kristof Witte & Rui Marques, 2010. "Influential observations in frontier models, a robust non-oriented approach to the water sector," Annals of Operations Research, Springer, vol. 181(1), pages 377-392, December.
    37. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    38. Greg J. Browder, 2007. "Stepping Up : Improving the Performance of China's Urban Water Utilities," World Bank Publications - Books, The World Bank Group, number 6833.
    39. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    40. Ramón Sala-Garrido & Manuel Mocholí-Arce & María Molinos-Senante & Alexandros Maziotis, 2021. "Comparing Operational, Environmental and Eco-Efficiency of Water Companies in England and Wales," Energies, MDPI, vol. 14(12), pages 1-14, June.
    41. Chen, Ku-Hsieh & Huang, Yi-Ju & Yang, Chih-Hai, 2009. "Analysis of regional productivity growth in China: A generalized metafrontier MPI approach," China Economic Review, Elsevier, vol. 20(4), pages 777-792, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mocholi-Arce, Manuel & Sala-Garrido, Ramon & Molinos-Senante, Maria & Maziotis, Alexandros, 2021. "Performance assessment of water companies: A metafrontier approach accounting for quality of service and group heterogeneities," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    2. Yin, Changjun & Hsiao, Bo & See, Kok Fong, 2024. "Efficiency analysis of China's urban water supply utilities using a dynamic multiactivity network DEA model," Structural Change and Economic Dynamics, Elsevier, vol. 71(C), pages 387-404.
    3. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
    4. Romano, Giulia & Molinos-Senante, María & Carosi, Laura & Llanquileo-Melgarejo, Paula & Sala-Garrido, Ramón & Mocholi-Arce, Manuel, 2021. "Assessing the dynamic eco-efficiency of Italian municipalities by accounting for the ownership of the entrusted waste utilities," Utilities Policy, Elsevier, vol. 73(C).
    5. Alexandros Maziotis & Ramon Sala-Garrido & Manuel Mocholi-Arce & Maria Molinos-Senante, 2021. "Changes to The Productivity of Water Companies: Comparison of Fully Private and Concessionary Water Companies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3355-3371, August.
    6. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    7. Yujiao Xian & Ke Wang & Xunpeng Shi & Chi Zhang & Yi-Ming Wei & Zhimin Huang, 2018. "Carbon emissions intensity reduction target for China¡¯s power industry: An efficiency and productivity perspective," CEEP-BIT Working Papers 117, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    8. Lin, Ruiyue & Peng, Yudan, 2024. "A new cross-efficiency meta-frontier analysis method with good ability to identify technology gaps," European Journal of Operational Research, Elsevier, vol. 314(2), pages 735-746.
    9. Jia-Ching Juo & Yu-Hui Lin & Tsai-Chia Chen, 2015. "Productivity change of Taiwanese farmers’ credit unions: a nonparametric metafrontier Malmquist–Luenberger productivity indicator," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 125-147, March.
    10. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    11. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    12. Yung-Hsiang Lu & Ku-Hsieh Chen & Jen-Chi Cheng & Chih-Chun Chen & Sian-Yuan Li, 2019. "Analysis of Environmental Productivity on Fossil Fuel Power Plants in the U.S," Sustainability, MDPI, vol. 11(24), pages 1-27, December.
    13. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    14. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    15. Yu, Shasha & Yuan, Xuanyu & Yao, Xinyan & Lei, Ming, 2022. "Carbon leakage and low-carbon performance: Heterogeneity of responsibility perspectives," Energy Policy, Elsevier, vol. 165(C).
    16. Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.
    17. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    18. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    19. Juan Du & Yongrui Duan & Jinghua Xu, 2019. "The infeasible problem of Malmquist–Luenberger index and its application on China’s environmental total factor productivity," Annals of Operations Research, Springer, vol. 278(1), pages 235-253, July.
    20. Mercedes Beltrán-Esteve & José Gómez-Limón & Andrés Picazo-Tadeo & Ernest Reig-Martínez, 2014. "A metafrontier directional distance function approach to assessing eco-efficiency," Journal of Productivity Analysis, Springer, vol. 41(1), pages 69-83, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:95:y:2025:i:c:s0957178725000116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.