IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v81y2023ics0957178722001473.html
   My bibliography  Save this article

Incorporating nonrevenue water in the efficiency assessment of water supply utilities: A parametric enhanced hyperbolic distance function

Author

Listed:
  • Goh, Kim Huat
  • See, Kok Fong

Abstract

This study assesses the technical efficiency of water utilities incorporating an undesirable output, nonrevenue water, and allowing a proportional input reduction. A parametric enhanced hyperbolic distance function was applied to Malaysia's 14 state water utilities from 2000 to 2017. Overall, Malaysia's water utilities can increase the water volume delivered while decreasing nonrevenue water and making further input reductions. Water utilities, on average, experienced higher technical efficiency after the regulatory reform. Network density and regulatory reform significantly influenced the technical inefficiency of water utilities in Malaysia.

Suggested Citation

  • Goh, Kim Huat & See, Kok Fong, 2023. "Incorporating nonrevenue water in the efficiency assessment of water supply utilities: A parametric enhanced hyperbolic distance function," Utilities Policy, Elsevier, vol. 81(C).
  • Handle: RePEc:eee:juipol:v:81:y:2023:i:c:s0957178722001473
    DOI: 10.1016/j.jup.2022.101483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178722001473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2022.101483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    2. Jean-Joseph Minviel & Timo Sipiläinen, 2021. "A dynamic stochastic frontier approach with persistent and transient inefficiency and unobserved heterogeneity," Post-Print hal-03236127, HAL.
    3. Catherine J. Morrison Paul & Warren E. Johnston & Gerald A. G. Frengley, 2000. "Efficiency in New Zealand Sheep and Beef Farming: The Impacts of Regulatory Reform," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 325-337, May.
    4. Chaffai, Mohamed, 2020. "Hyperbolic distance function, technical efficiency and stability to shocks: A comparison between Islamic banks and conventional banks in MENA region," Global Finance Journal, Elsevier, vol. 46(C).
    5. Badin, Luiza & Daraio, Cinzia & Simar, Léopold, 2010. "Optimal bandwidth selection for conditional efficiency measures: A data-driven approach," European Journal of Operational Research, Elsevier, vol. 201(2), pages 633-640, March.
    6. Kristof De Witte & Rui Marques, 2010. "Designing performance incentives, an international benchmark study in the water sector," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 189-220, June.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Rafael Cuesta & José Zofío, 2005. "Hyperbolic Efficiency and Parametric Distance Functions: With Application to Spanish Savings Banks," Journal of Productivity Analysis, Springer, vol. 24(1), pages 31-48, September.
    9. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    10. Yen Hua Teo, 2014. "Water services industry reforms in Malaysia," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 30(1), pages 37-46, March.
    11. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    12. Léopold Simar & Paul Wilson, 2011. "Two-stage DEA: caveat emptor," Journal of Productivity Analysis, Springer, vol. 36(2), pages 205-218, October.
    13. Humberto Brea-Solis & Sergio Perelman & David Saal, 2017. "Regulatory incentives to water losses reduction: the case of England and Wales," Journal of Productivity Analysis, Springer, vol. 47(3), pages 259-276, June.
    14. See, Kok Fong & Ma, Zhanxin, 2018. "Does non-revenue water affect Malaysia's water services industry productivity?," Utilities Policy, Elsevier, vol. 54(C), pages 125-131.
    15. Xiaohui Huang & Lili Wang & Qian Lu, 2018. "Vulnerability Assessment of Soil and Water Loss in Loess Plateau and Its Impact on Farmers’ Soil and Water Conservation Adaptive Behavior," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    16. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    17. Ferro, Gustavo & Mercadier, Augusto C., 2016. "Technical efficiency in Chile's water and sanitation providers," Utilities Policy, Elsevier, vol. 43(PA), pages 97-106.
    18. Cuesta, Rafael A. & Lovell, C.A. Knox & Zofío, José L., 2009. "Environmental efficiency measurement with translog distance functions: A parametric approach," Ecological Economics, Elsevier, vol. 68(8-9), pages 2232-2242, June.
    19. Coelli, Tim J. & Gautier, Axel & Perelman, Sergio & Saplacan-Pop, Roxana, 2013. "Estimating the cost of improving quality in electricity distribution: A parametric distance function approach," Energy Policy, Elsevier, vol. 53(C), pages 287-297.
    20. Nariman Mohd Saad & Azhar Harun, 2017. "Restructuring to Improve Water Services in Malaysia," Institutions and Economies (formerly known as International Journal of Institutions and Economies), Faculty of Economics and Administration, University of Malaya, vol. 9(3), pages 21-49, July.
    21. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    22. Molinos-Senante, María & Villegas, Andres & Maziotis, Alexandros, 2019. "Are water tariffs sufficient incentives to reduce water leakages? An empirical approach for Chile," Utilities Policy, Elsevier, vol. 61(C).
    23. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    24. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    25. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    26. Tan, Jeff, 2012. "The Pitfalls of Water Privatization: Failure and Reform in Malaysia," World Development, Elsevier, vol. 40(12), pages 2552-2563.
    27. Jean Joseph Minviel & Timo Sipiläinen, 2021. "A dynamic stochastic frontier approach with persistent and transient inefficiency and unobserved heterogeneity," Agricultural Economics, International Association of Agricultural Economists, vol. 52(4), pages 575-589, July.
    28. María Molinos-Senante & Manuel Mocholi-Arce & Ramón Sala-Garrido, 2016. "Efficiency Assessment of Water and Sewerage Companies: a Disaggregated Approach Accounting for Service Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4311-4328, September.
    29. Maziotis, Alexandros & Molinos-Senante, Maria, 2022. "The impact of model specification and environmental variables on measuring the overall technical efficiency of water and sewerage services: Evidence from Chile," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 191-198.
    30. Yanyan Liu & Robert Myers, 2009. "Model selection in stochastic frontier analysis with an application to maize production in Kenya," Journal of Productivity Analysis, Springer, vol. 31(1), pages 33-46, February.
    31. Mande Buafua, Patrick, 2015. "Efficiency of urban water supply in Sub-Saharan Africa: Do organization and regulation matter?," Utilities Policy, Elsevier, vol. 37(C), pages 13-22.
    32. Mellah, Thuraya & Ben Amor, Tawfik, 2016. "Performance of the Tunisian Water Utility: An input-distance function approach," Utilities Policy, Elsevier, vol. 38(C), pages 18-32.
    33. Grosskopf, S. & Margaritis, D. & Valdmanis, V., 1995. "Estimating output substitutability of hospital services: A distance function approach," European Journal of Operational Research, Elsevier, vol. 80(3), pages 575-587, February.
    34. Duman, Yavuz Selman & Kasman, Adnan, 2018. "Environmental technical efficiency in EU member and candidate countries: A parametric hyperbolic distance function approach," Energy, Elsevier, vol. 147(C), pages 297-307.
    35. Kristof Witte & Rui Marques, 2010. "Influential observations in frontier models, a robust non-oriented approach to the water sector," Annals of Operations Research, Springer, vol. 181(1), pages 377-392, December.
    36. Zhang, Zibin & Ye, Jianliang, 2015. "Decomposition of environmental total factor productivity growth using hyperbolic distance functions: A panel data analysis for China," Energy Economics, Elsevier, vol. 47(C), pages 87-97.
    37. Corton, Maria Luisa & Berg, Sanford V., 2009. "Benchmarking Central American water utilities," Utilities Policy, Elsevier, vol. 17(3-4), pages 267-275, September.
    38. Goh, Kim Huat & See, Kok Fong, 2021. "Measuring the productivity growth of Malaysia's water sector: Implications for regulatory reform," Utilities Policy, Elsevier, vol. 71(C).
    39. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    40. Mugisha, Silver, 2007. "Effects of incentive applications on technical efficiencies: Empirical evidence from Ugandan water utilities," Utilities Policy, Elsevier, vol. 15(4), pages 225-233, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mocholi-Arce, Manuel & Sala-Garrido, Ramon & Molinos-Senante, Maria & Maziotis, Alexandros, 2023. "Profit productivity change in the English and Welsh water sector: Impact of the price reviews," Utilities Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    2. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    3. Valentin Zelenyuk & Zhichao Wang, 2023. "Random vs. Explained Inefficiency in Stochastic Frontier Analysis: The Case of Queensland Hospitals," CEPA Working Papers Series WP052023, School of Economics, University of Queensland, Australia.
    4. Manuel Llorca & Ana Rodriguez-Alvarez, 2023. "Economic, Environmental, and Energy Equity Convergence: Evidence of a Multi-Speed Europe?," Efficiency Series Papers 2023/05, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    5. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    6. Belotti, Federico & Ilardi, Giuseppe, 2018. "Consistent inference in fixed-effects stochastic frontier models," Journal of Econometrics, Elsevier, vol. 202(2), pages 161-177.
    7. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    8. Xie, Bai-Chen & Ni, Kang-Kang & O'Neill, Eoghan & Li, Hong-Zhou, 2021. "The scale effect in China's power grid sector from the perspective of malmquist total factor productivity analysis," Utilities Policy, Elsevier, vol. 69(C).
    9. Ben Amor, Tawfik & Mellah, Thuraya, 2023. "Cost efficiency of Tunisian water utility districts: Does heterogeneity matter?," Utilities Policy, Elsevier, vol. 84(C).
    10. Ajayi, V. & Weyman-Jones, T., 2021. "State-Level Electricity Generation Efficiency: Do Restructuring and Regulatory Institutions Matter in the US?," Cambridge Working Papers in Economics 2166, Faculty of Economics, University of Cambridge.
    11. Goh, Kim Huat & See, Kok Fong, 2021. "Measuring the productivity growth of Malaysia's water sector: Implications for regulatory reform," Utilities Policy, Elsevier, vol. 71(C).
    12. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    13. Maziotis, Alexandros & Molinos-Senante, Maria, 2022. "The impact of model specification and environmental variables on measuring the overall technical efficiency of water and sewerage services: Evidence from Chile," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 191-198.
    14. Satya Paul & Sriram Shankar, 2020. "Estimating efficiency effects in a panel data stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 53(2), pages 163-180, April.
    15. Bravo-Ureta, Boris E. & Jara-Rojas, Roberto & Lachaud, Michee A. & Moreira L., Victor H. & Scheierling, Susanne M., 2015. "Water and Farm Efficiency: Insights from the Frontier Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 206076, Agricultural and Applied Economics Association.
    16. Xie, Bai-Chen & Zhang, Zhen-Jiang & Anaya, Karim L., 2021. "Has the unbundling reform improved the service efficiency of China's power grid firms?," Energy Economics, Elsevier, vol. 95(C).
    17. Ajayi, Victor & Weyman-Jones, Tom, 2021. "State-level electricity generation efficiency: Do restructuring and regulatory institutions matter in the US?," Energy Economics, Elsevier, vol. 104(C).
    18. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    19. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    20. Jiang, Chunxia & Yao, Shujie & Zhang, Zongyi, 2009. "The effects of governance changes on bank efficiency in China: A stochastic distance function approach," China Economic Review, Elsevier, vol. 20(4), pages 717-731, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:81:y:2023:i:c:s0957178722001473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.