IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v27y1999i2p204-228.html
   My bibliography  Save this article

Finite Horizon Bargaining and the Consistent Field

Author

Listed:
  • Gomes, Armando
  • Hart, Sergiu
  • Mas-Colell, Andreu

Abstract

This paper explores the relationships between noncooperative bargaining games and the consistent value for non-transferable utility (NTU) cooperative games. A dynamic approach to the consistent value for NTU games is introduced: the consistent vector field. The main contribution of the paper is to show that the consistent field is intimately related to the concept of subgame perfection for finite horizon noncooperative bargaining games, as the horizon goes to infinity and the cost of delay goes to zero. The solutions of the dynamic system associated to the consistent field characterize the subgame perfect equilibrium payoffs of the noncooperative bargaining games. We show that for transferable utility, hyperplane and pure bargaining games, the dynamics of the consistent field converge globally to the unique consistent value. However, in the general NTU case, the dynamics of the consistent field can be complex. An example is constructed where the consistent field has cyclic solutions; moreover, the finite horizon subgame perfect equilibria do not approach the consistent value. Journal of Economic Literature Classification Numbers: C71, C72.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Gomes, Armando & Hart, Sergiu & Mas-Colell, Andreu, 1999. "Finite Horizon Bargaining and the Consistent Field," Games and Economic Behavior, Elsevier, vol. 27(2), pages 204-228, May.
  • Handle: RePEc:eee:gamebe:v:27:y:1999:i:2:p:204-228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(98)90665-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hart, Oliver & Moore, John, 1990. "Property Rights and the Nature of the Firm," Journal of Political Economy, University of Chicago Press, vol. 98(6), pages 1119-1158, December.
    2. Hart, Sergiu & Mas-Colell, Andreu, 1996. "Harsanyi Values of Large Economies: Nonequivalence to Competitive Equilibria," Games and Economic Behavior, Elsevier, vol. 13(1), pages 74-99, March.
    3. Winter, Eyal, 1994. "The Demand Commitment Bargaining and Snowballing Cooperation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(2), pages 255-273, March.
    4. Sjostrom, Tomas, 1991. "Stahl's bargaining model," Economics Letters, Elsevier, vol. 36(2), pages 153-157, June.
    5. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    6. Maschler,Michael Owen,Guillermo & Peleg,Bezalel, 1987. "Paths leadings to the Nash set," Discussion Paper Serie A 135, University of Bonn, Germany.
    7. Martin J. Osborne & Ariel Rubinstein, 2005. "Bargaining and Markets," Levine's Bibliography 666156000000000515, UCLA Department of Economics.
    8. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    9. Maschler, M & Owen, G, 1989. "The Consistent Shapley Value for Hyperplane Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(4), pages 389-407.
    10. Hart, Sergiu & Mas-Colell, Andreu, 1996. "Bargaining and Value," Econometrica, Econometric Society, vol. 64(2), pages 357-380, March.
    11. Gul, Faruk, 1989. "Bargaining Foundations of Shapley Value," Econometrica, Econometric Society, vol. 57(1), pages 81-95, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Armando Gomes, "undated". "A Theory of Negotiation and Formation of Coalition," CARESS Working Papres 99-12, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
    2. Armo Gomes, "undated". "A Theory of Negotiation and Formation of Coalition," Penn CARESS Working Papers f0f956747161c96ffb6e79d05, Penn Economics Department.
    3. Joan-Maria Esteban & József Sákovics, 2005. "A Theory of Agreements in the Shadow of Conflict," Working Papers 255, Barcelona Graduate School of Economics.
    4. Haruo Imai & Hannu Salonen, 2012. "A characterization of a limit solution for finite horizon bargaining problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 603-622, August.
    5. de Clippel, Geoffroy, 2007. "The procedural value for cooperative games with non-transferable utility," Mathematical Social Sciences, Elsevier, vol. 53(1), pages 46-52, January.
    6. Barbera, Salvador & Perea, Andres, 2002. "Supporting others and the evolution of influence," Journal of Economic Dynamics and Control, Elsevier, vol. 26(12), pages 2051-2092, October.
    7. Emililo Calvo, 2004. "Single NTU-value solutions," Game Theory and Information 0405004, EconWPA, revised 10 Jun 2004.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:27:y:1999:i:2:p:204-228. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.