IDEAS home Printed from https://ideas.repec.org/a/eee/finmar/v16y2013i4p646-679.html
   My bibliography  Save this article

Low-latency trading

Author

Listed:
  • Hasbrouck, Joel
  • Saar, Gideon

Abstract

We define low-latency activity as strategies that respond to market events in the millisecond environment, the hallmark of proprietary trading by high-frequency traders though it could include other algorithmic activity as well. We propose a new measure of low-latency activity to investigate the impact of high-frequency trading on the market environment. Our measure is highly correlated with NASDAQ-constructed estimates of high-frequency trading, but it can be computed from widely-available message data. We use this measure to study how low-latency activity affects market quality both during normal market conditions and during a period of declining prices and heightened economic uncertainty. Our analysis suggests that increased low-latency activity improves traditional market quality measures—decreasing spreads, increasing displayed depth in the limit order book, and lowering short-term volatility. Our findings suggest that given the current market structure for U.S. equities, increased low-latency activity need not work to the detriment of long-term investors.

Suggested Citation

  • Hasbrouck, Joel & Saar, Gideon, 2013. "Low-latency trading," Journal of Financial Markets, Elsevier, vol. 16(4), pages 646-679.
  • Handle: RePEc:eee:finmar:v:16:y:2013:i:4:p:646-679
    DOI: 10.1016/j.finmar.2013.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1386418113000165
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thompson, Samuel B., 2011. "Simple formulas for standard errors that cluster by both firm and time," Journal of Financial Economics, Elsevier, vol. 99(1), pages 1-10, January.
    2. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2011. "Recent trends in trading activity and market quality," Journal of Financial Economics, Elsevier, vol. 101(2), pages 243-263, August.
    3. Grossman, Sanford J & Miller, Merton H, 1988. " Liquidity and Market Structure," Journal of Finance, American Finance Association, vol. 43(3), pages 617-637, July.
    4. Hendershott, Terrence & Riordan, Ryan, 2013. "Algorithmic Trading and the Market for Liquidity," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(04), pages 1001-1024, August.
    5. Brock, William A. & Kleidon, Allan W., 1992. "Periodic market closure and trading volume : A model of intraday bids and asks," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 451-489.
    6. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    7. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    8. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    9. Hendershott, Terrence & Moulton, Pamela C., 2011. "Automation, speed, and stock market quality: The NYSE's Hybrid," Journal of Financial Markets, Elsevier, vol. 14(4), pages 568-604, November.
    10. Gerig, Austin & Michayluk, David, 2017. "Automated liquidity provision," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 1-13.
    11. Hasbrouck, Joel & Saar, Gideon, 2009. "Technology and liquidity provision: The blurring of traditional definitions," Journal of Financial Markets, Elsevier, vol. 12(2), pages 143-172, May.
    12. Carrion, Allen, 2013. "Very fast money: High-frequency trading on the NASDAQ," Journal of Financial Markets, Elsevier, vol. 16(4), pages 680-711.
    13. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    14. Hagströmer, Björn & Nordén, Lars, 2013. "The diversity of high-frequency traders," Journal of Financial Markets, Elsevier, vol. 16(4), pages 741-770.
    15. Johannes Prix & Otto Loistl & Michael Huetl, 2007. "Algorithmic Trading Patterns in Xetra Orders," The European Journal of Finance, Taylor & Francis Journals, vol. 13(8), pages 717-739.
    16. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(02), pages 222-240, April.
    17. Foucault, Thierry, 1999. "Order flow composition and trading costs in a dynamic limit order market1," Journal of Financial Markets, Elsevier, vol. 2(2), pages 99-134, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    High-frequency trading; Limit order markets; NASDAQ; Order placement strategies; Liquidity; Market quality;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finmar:v:16:y:2013:i:4:p:646-679. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/finmar .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.