IDEAS home Printed from
   My bibliography  Save this article

A Dysfunctional Role Of High Frequency Trading In Electronic Markets



    () (Johnson Graduate School of Management, Cornell University, Ithaca, New York 14853, USA;
    Kamakura Corporation, USA)


    () (Statistics Depatrment, Columbia University, New York, NY 10027, USA)


This paper shows that high frequency trading may play a dysfunctional role in financial markets. Contrary to arbitrageurs who make financial markets more efficient by taking advantage of and thereby eliminating mispricings, high frequency traders can create a mispricing that they unknowingly exploit to the disadvantage of ordinary investors. This mispricing is generated by the collective and independent actions of high frequency traders, coordinated via the observation of a common signal.

Suggested Citation

  • Robert A. Jarrow & Philip Protter, 2012. "A Dysfunctional Role Of High Frequency Trading In Electronic Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 1-15.
  • Handle: RePEc:wsi:ijtafx:v:15:y:2012:i:03:n:s0219024912500227
    DOI: 10.1142/S0219024912500227

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    2. Wang, Junbo & Wu, Chunchi, 2015. "Liquidity, credit quality, and the relation between volatility and trading activity: Evidence from the corporate bond market," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 183-203.
    3. Gianluca Piero Maria Virgilio, 2019. "High-frequency trading: a literature review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 183-208, June.
    4. Kin‐Yip Ho & Wai‐Man Liu & Jing Yu, 2018. "Public News Arrival and Cross‐Asset Correlation Breakdown," International Review of Finance, International Review of Finance Ltd., vol. 18(3), pages 411-451, September.
    5. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    6. Dmitry Levando & Maxim Sakharov, 2018. "Natural Instability of Equilibrium Prices," Working Papers 2018:01, Department of Economics, University of Venice "Ca' Foscari".
    7. Bizzozero, Paolo & Flepp, Raphael & Franck, Egon, 2018. "The effect of fast trading on price discovery and efficiency: Evidence from a betting exchange," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 126-143.
    8. Angerer, Martin & Neugebauer, Tibor & Shachat, Jason, 2019. "Arbitrage bots in experimental asset markets," MPRA Paper 96224, University Library of Munich, Germany.
    9. Samuel N. Cohen & Lukasz Szpruch, 2011. "A limit order book model for latency arbitrage," Papers 1110.4811,
    10. Gerig, Austin & Michayluk, David, 2017. "Automated liquidity provision," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 1-13.
    11. Zura Kakushadze, 2020. "Quant Bust 2020," Papers 2006.05632,
    12. Anagnostidis, Panagiotis & Fontaine, Patrice & Varsakelis, Christos, 2020. "Are high–frequency traders informed?," Economic Modelling, Elsevier, vol. 93(C), pages 365-383.
    13. García Iborra, Rafael & Howden, David, 2016. "Uses and Misuses of Arbitrage in Financial Theory, and a Suggested Alternative," MPRA Paper 79802, University Library of Munich, Germany.
    14. Farjam, Mike & Kirchkamp, Oliver, 2018. "Bubbles in hybrid markets: How expectations about algorithmic trading affect human trading," Journal of Economic Behavior & Organization, Elsevier, vol. 146(C), pages 248-269.
    15. Virgilio, Gianluca Piero Maria, 2020. "When spread bites fast – Volatility and wide bid-ask spread in a mixed high-frequency and low-frequency environment," Research in International Business and Finance, Elsevier, vol. 51(C).
    16. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    17. Corbet, Shaen & Larkin, Charles & Lucey, Brian, 2020. "The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies," Finance Research Letters, Elsevier, vol. 35(C).
    18. Jangkoo Kang & Kyung Yoon Kwon & Wooyeon Kim, 2020. "Flow toxicity of high‐frequency trading and its impact on price volatility: Evidence from the KOSPI 200 futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(2), pages 164-191, February.
    19. Aït-Sahalia, Yacine & Brunetti, Celso, 2020. "High frequency traders and the price process," Journal of Econometrics, Elsevier, vol. 217(1), pages 20-45.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:15:y:2012:i:03:n:s0219024912500227. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.