IDEAS home Printed from https://ideas.repec.org/p/net/wpaper/0908.html
   My bibliography  Save this paper

Algorithmic Trading and Information

Author

Listed:

Abstract

We examine algorithmic trades (AT) and their role in the price discovery process in the 30 DAX stocks on the Deutsche Boerse. AT liquidity demand represents 52% of volume and AT supplies liquidity on 50% of volume. AT act strategically by monitoring the market for liquidity and deviations of price from fundamental value. AT consume liquidity when it is cheap and supply liquidity when it is expensive. AT contribute more to the efficient price by placing more efficient quotes and AT demanding liquidity to move the prices towards the efficient price.

Suggested Citation

  • Terrence Hendershott & Ryan Riordan, 2009. "Algorithmic Trading and Information," Working Papers 09-08, NET Institute, revised Aug 2009.
  • Handle: RePEc:net:wpaper:0908
    as

    Download full text from publisher

    File URL: http://www.netinst.org/Hendershott_Riordan_09-08.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. repec:bla:jfinan:v:58:y:2003:i:6:p:2637-2666 is not listed on IDEAS
    3. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    4. Bessembinder, Hendrik, 2003. "Issues in assessing trade execution costs," Journal of Financial Markets, Elsevier, vol. 6(3), pages 233-257, May.
    5. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    6. Keim, Donald B. & Madhavan, Ananth, 1995. "Anatomy of the trading process Empirical evidence on the behavior of institutional traders," Journal of Financial Economics, Elsevier, vol. 37(3), pages 371-398, March.
    7. Parlour, Christine A, 1998. "Price Dynamics in Limit Order Markets," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 789-816.
    8. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    9. Ranaldo, Angelo, 2004. "Order aggressiveness in limit order book markets," Journal of Financial Markets, Elsevier, vol. 7(1), pages 53-74, January.
    10. Lo, Andrew W. & MacKinlay, A. Craig & Zhang, June, 2002. "Econometric models of limit-order executions," Journal of Financial Economics, Elsevier, vol. 65(1), pages 31-71, July.
    11. Copeland, Thomas E & Galai, Dan, 1983. "Information Effects on the Bid-Ask Spread," Journal of Finance, American Finance Association, vol. 38(5), pages 1457-1469, December.
    12. Michael J. Barclay & Terrence Hendershott & D. Timothy McCormick, 2003. "Competition among Trading Venues: Information and Trading on Electronic Communications Networks," Journal of Finance, American Finance Association, vol. 58(6), pages 2637-2665, December.
    13. Pankaj K. Jain, 2005. "Financial Market Design and the Equity Premium: Electronic versus Floor Trading," Journal of Finance, American Finance Association, vol. 60(6), pages 2955-2985, December.
    14. Kumar Venkataraman, 2001. "Automated Versus Floor Trading: An Analysis of Execution Costs on the Paris and New York Exchanges," Journal of Finance, American Finance Association, vol. 56(4), pages 1445-1485, August.
    15. Harald Hau, 2001. "Location Matters: An Examination of Trading Profits," Journal of Finance, American Finance Association, vol. 56(5), pages 1959-1983, October.
    16. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2015, January-A.
    2. Biais, Bruno & Glosten, Larry & Spatt, Chester, 2005. "Market microstructure: A survey of microfoundations, empirical results, and policy implications," Journal of Financial Markets, Elsevier, vol. 8(2), pages 217-264, May.
    3. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    4. Fong, Kingsley Y.L. & Liu, Wai-Man, 2010. "Limit order revisions," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1873-1885, August.
    5. G. Wuyts, 2007. "Stock Market Liquidity.Determinants and Implications," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(2), pages 279-316.
    6. Abad, David & Pascual, Roberto, 2015. "The friction-free weighted price contribution," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 226-239.
    7. Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
    8. Stenfors, Alexis & Susai, Masayuki, 2019. "Liquidity withdrawal in the FX spot market: A cross-country study using high-frequency data," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 59(C), pages 36-57.
    9. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 22, July-Dece.
    10. Hendershott, Terrence & Moulton, Pamela C., 2011. "Automation, speed, and stock market quality: The NYSE's Hybrid," Journal of Financial Markets, Elsevier, vol. 14(4), pages 568-604, November.
    11. Ryan Garvey & Tao Huang & Fei Wu, 2021. "Is faster or slower trading better? An examination of order type execution speed and costs," European Financial Management, European Financial Management Association, vol. 27(2), pages 326-363, March.
    12. Suchismita Mishra & Le Zhao, 2021. "Order Routing Decisions for a Fragmented Market: A Review," JRFM, MDPI, vol. 14(11), pages 1-32, November.
    13. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    14. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    15. Alessandro Beber & Cecilia Caglio, 2005. "Order Submission Strategies and Information: Empirical Evidence from the NYSE," FAME Research Paper Series rp146, International Center for Financial Asset Management and Engineering.
    16. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.
    17. Alexander, Gordon J. & Peterson, Mark A., 2007. "An analysis of trade-size clustering and its relation to stealth trading," Journal of Financial Economics, Elsevier, vol. 84(2), pages 435-471, May.
    18. Menkhoff, Lukas & Osler, Carol L. & Schmeling, Maik, 2010. "Limit-order submission strategies under asymmetric information," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2665-2677, November.
    19. Comerton-Forde, Carole & Tang, Kar Mei, 2009. "Anonymity, liquidity and fragmentation," Journal of Financial Markets, Elsevier, vol. 12(3), pages 337-367, August.
    20. Chin‐Ho Chen & Junmao Chiu & Huimin Chung, 2020. "Arbitrage opportunities, liquidity provision, and trader types in an index option market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 279-307, March.

    More about this item

    Keywords

    Algorithmic trading; information technology; price discovery; market microstructure; price efficiency;
    All these keywords.

    JEL classification:

    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:net:wpaper:0908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Economides (email available below). General contact details of provider: http://www.NETinst.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.