IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v76y2025ics1544612325002168.html
   My bibliography  Save this article

A profitable currency portfolio strategy: Learning from connectedness

Author

Listed:
  • Wang, Wenhao
  • Cai, Feifei
  • Hong, Ziyi
  • Liu, Ruiqi
  • Zhang, Qingyi

Abstract

This study proposes a profitable currency portfolio strategy integrating dynamic connectedness into machine learning (ML) predictions. The portfolio is constructed using consensus predictions of return levels from LSTM and MLP and return directions from SVM and RF. Our findings reveal that connectedness slightly enhances returns but significantly reduces return volatility, implying its role in risk management. Compared to eight classical currency trading strategies, ML-based portfolios outperform in returns and mitigating extreme losses. Notably, portfolios incorporating RF predictions achieve the highest average return and Sharpe ratio among all strategies. Additionally, ML-based portfolios exhibit significant differences from classical strategies in determining currency positions.

Suggested Citation

  • Wang, Wenhao & Cai, Feifei & Hong, Ziyi & Liu, Ruiqi & Zhang, Qingyi, 2025. "A profitable currency portfolio strategy: Learning from connectedness," Finance Research Letters, Elsevier, vol. 76(C).
  • Handle: RePEc:eee:finlet:v:76:y:2025:i:c:s1544612325002168
    DOI: 10.1016/j.frl.2025.106952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612325002168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2025.106952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Adekoya, Oluwasegun B. & Akinseye, Ademola B. & Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David & Oliyide, Johnson, 2022. "Crude oil and Islamic sectoral stocks: Asymmetric TVP-VAR connectedness and investment strategies," Resources Policy, Elsevier, vol. 78(C).
    3. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia & Zhang, Yi, 2019. "Exchange rate prediction redux: New models, new data, new currencies," Journal of International Money and Finance, Elsevier, vol. 95(C), pages 332-362.
    4. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    5. Menkhoff, Lukas & Sarno, Lucio & Schmeling, Maik & Schrimpf, Andreas, 2012. "Currency momentum strategies," Journal of Financial Economics, Elsevier, vol. 106(3), pages 660-684.
    6. Abakah, Emmanuel Joel Aikins & Brahim, Mariem & Carlotti, Jean-Etienne & Tiwari, Aviral Kumar & Mensi, Walid, 2024. "Extreme downside risk connectedness and portfolio hedging among the G10 currencies," International Economics, Elsevier, vol. 178(C).
    7. Wan, Yang & He, Shi, 2021. "Dynamic connectedness of currencies in G7 countries: A Bayesian time-varying approach," Finance Research Letters, Elsevier, vol. 41(C).
    8. David C. Broadstock & Ioannis Chatziantoniou & David Gabauer, 2022. "Minimum Connectedness Portfolios and the Market for Green Bonds: Advocating Socially Responsible Investment (SRI) Activity," Springer Books, in: Christos Floros & Ioannis Chatziantoniou (ed.), Applications in Energy Finance, chapter 0, pages 217-253, Springer.
    9. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    10. Ghosh, Pushpendu & Neufeld, Ariel & Sahoo, Jajati Keshari, 2022. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Finance Research Letters, Elsevier, vol. 46(PA).
    11. Henriques, Irene & Sadorsky, Perry, 2024. "Do clean energy stocks diversify the risk of FinTech stocks? Connectedness and portfolio implications," Global Finance Journal, Elsevier, vol. 62(C).
    12. Bai, Lan & Wei, Yu & Zhang, Jiahao & Wang, Yizhi & Lucey, Brian M., 2023. "Diversification effects of China's carbon neutral bond on renewable energy stock markets: A minimum connectedness portfolio approach," Energy Economics, Elsevier, vol. 123(C).
    13. Junhuan Zhang & Wenjun Huang, 2021. "Option hedging using LSTM-RNN: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 21(10), pages 1753-1772, October.
    14. Clarida, Richard & Davis, Josh & Pedersen, Niels, 2009. "Currency carry trade regimes: Beyond the Fama regression," Journal of International Money and Finance, Elsevier, vol. 28(8), pages 1375-1389, December.
    15. Lustig, Hanno & Roussanov, Nikolai & Verdelhan, Adrien, 2014. "Countercyclical currency risk premia," Journal of Financial Economics, Elsevier, vol. 111(3), pages 527-553.
    16. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    17. Pham, Linh & Do, Hung Xuan, 2022. "Green bonds and implied volatilities: Dynamic causality, spillovers, and implications for portfolio management," Energy Economics, Elsevier, vol. 112(C).
    18. Hlouskova, Jaroslava & Schmidheiny, Kurt & Wagner, Martin, 2009. "Multistep predictions for multivariate GARCH models: Closed form solution and the value for portfolio management," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 330-336, March.
    19. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    20. Sepehr Ramyar & Farhad Kianfar, 2019. "Forecasting Crude Oil Prices: A Comparison Between Artificial Neural Networks and Vector Autoregressive Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 743-761, February.
    21. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Opie, Wei & Riddiough, Steven J., 2020. "Global currency hedging with common risk factors," Journal of Financial Economics, Elsevier, vol. 136(3), pages 780-805.
    2. Zhang, Shaojun, 2022. "Dissecting currency momentum," Journal of Financial Economics, Elsevier, vol. 144(1), pages 154-173.
    3. Colacito, Riccardo & Riddiough, Steven J. & Sarno, Lucio, 2020. "Business cycles and currency returns," Journal of Financial Economics, Elsevier, vol. 137(3), pages 659-678.
    4. Su, Xianfang & Zhao, Yachao, 2025. "Risk spillovers between Chinese new energy futures and carbon-intensive assets: Asymmetric effect, time–frequency dynamics, and portfolio strategies," The North American Journal of Economics and Finance, Elsevier, vol. 75(PA).
    5. Xu, Danyang & Hu, Yang & Oxley, Les & Lin, Boqiang & He, Yongda, 2025. "Exploring the connectedness between major volatility indexes and worldwide sustainable investments," International Review of Financial Analysis, Elsevier, vol. 97(C).
    6. Chen, Shu-Hsiu, 2017. "Carry trade strategies based on option-implied information: Evidence from a cross-section of funding currencies," Journal of International Money and Finance, Elsevier, vol. 78(C), pages 1-20.
    7. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    8. Gabauer, David & Chatziantoniou, Ioannis & Stenfors, Alexis, 2023. "Model-free connectedness measures," Finance Research Letters, Elsevier, vol. 54(C).
    9. Engel, Charles & Kazakova, Katya & Wang, Mengqi & Xiang, Nan, 2022. "A reconsideration of the failure of uncovered interest parity for the U.S. dollar," Journal of International Economics, Elsevier, vol. 136(C).
    10. Rubaszek, Michał & Beckmann, Joscha & Ca' Zorzi, Michele & Kwas, Marek, 2022. "Boosting carry with equilibrium exchange rate estimates," Working Paper Series 2731, European Central Bank.
    11. Abakah, Emmanuel Joel Aikins & Brahim, Mariem & Carlotti, Jean-Etienne & Tiwari, Aviral Kumar & Mensi, Walid, 2024. "Extreme downside risk connectedness and portfolio hedging among the G10 currencies," International Economics, Elsevier, vol. 178(C).
    12. Stenfors, Alexis & Chatziantoniou, Ioannis & Gabauer, David, 2022. "Independent policy, dependent outcomes: A game of cross-country dominoes across European yield curves," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    13. Hertrich, Daniel, 2023. "Carry and conditional value at risk trend: Capturing the short-, intermediate-, and long-term trends of left-tail risk forecasts," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    14. Dahlquist, Magnus & Hasseltoft, Henrik, 2020. "Economic momentum and currency returns," Journal of Financial Economics, Elsevier, vol. 136(1), pages 152-167.
    15. Gao, Yang & Zhou, Yueyi & Zhao, Wandi, 2025. "Liquidity spillover and investment strategy construction among Chinese green financial markets," International Review of Economics & Finance, Elsevier, vol. 98(C).
    16. Lei, Jian, 2021. "Curve momentum in currency markets," Finance Research Letters, Elsevier, vol. 42(C).
    17. Stijn Claessens & M Ayhan Kose, 2017. "Asset prices and macroeconomic outcomes: a survey," BIS Working Papers 676, Bank for International Settlements.
    18. Cui, Jinxin & Alshater, Muneer M. & Mensi, Walid, 2023. "Higher-order moment risk spillovers and optimal portfolio strategies in global oil markets," Resources Policy, Elsevier, vol. 86(PA).
    19. Illia Baranochnikov & Robert Ślepaczuk, 2022. "A comparison of LSTM and GRU architectures with novel walk-forward approach to algorithmic investment strategy," Working Papers 2022-21, Faculty of Economic Sciences, University of Warsaw.
    20. Cheung, Yin-Wong & Wang, Wenhao, 2022. "Uncovered interest rate parity redux: Non-uniform effects," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 133-151.

    More about this item

    Keywords

    Currency portfolios; Dynamic connectedness; Machine learning; Cosine similarity of currency positions;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:76:y:2025:i:c:s1544612325002168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.