IDEAS home Printed from https://ideas.repec.org/p/lau/crdeep/04.10.html
   My bibliography  Save this paper

Multistep Predictions for Multivariate GARCH Models: Closed Form Solution and the Value for Portfolio Management

Author

Listed:
  • Jaroslava HLOUSKOVA
  • Kurt SCHMIDHEINY
  • Martin WAGNER

Abstract

The missing wage rigidity in general equilibrium models of efficiency wages is an artifact of the external wage reference perspective conventionally adopted by the literature. Efficiency wage models based on an internal wage reference perspective are capable of generating strong wage rigidity. We propose a structural model of efficiency wages that is broadly consistent with the reported evidence on fairness in labor relations and rent-sharing. Our model provides a robust explanation for wage rigidity and procyclical effort. It also rationalizes reciprocal behavior by workers and the observation that firm productivity is a significant predictor of wage setting.

Suggested Citation

  • Jaroslava HLOUSKOVA & Kurt SCHMIDHEINY & Martin WAGNER, 2004. "Multistep Predictions for Multivariate GARCH Models: Closed Form Solution and the Value for Portfolio Management," Cahiers de Recherches Economiques du Département d'Econométrie et d'Economie politique (DEEP) 04.10, Université de Lausanne, Faculté des HEC, DEEP.
  • Handle: RePEc:lau:crdeep:04.10
    as

    Download full text from publisher

    File URL: http://www.hec.unil.ch/deep/textes/04.10.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    5. Menelaos Karanasos, "undated". "Prediction in ARMA models with GARCH in Mean Effects," Discussion Papers 99/11, Department of Economics, University of York.
    6. Baillie, Richard T., 1987. "Inference in dynamic models containing 'surprise' variables," Journal of Econometrics, Elsevier, vol. 35(1), pages 101-117, May.
    7. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    8. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    9. Olivier Ledoit & Pedro Santa-Clara & Michael Wolf, 2003. "Flexible Multivariate GARCH Modeling with an Application to International Stock Markets," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 735-747, August.
    10. Baillie, Richard T., 1980. "Predictions from ARMAX models," Journal of Econometrics, Elsevier, vol. 12(3), pages 365-374, April.
    11. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    12. Lutkepohl, Helmut, 1984. "Linear aggregation of vector autoregressive moving average processes," Economics Letters, Elsevier, vol. 14(4), pages 345-350.
    13. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    14. Baillie, Richard T. & Bollerslev, Tim, 1992. "Prediction in dynamic models with time-dependent conditional variances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 91-113.
    15. Li, W K & Ling, Shiqing & McAleer, Michael, 2002. " Recent Theoretical Results for Time Series Models with GARCH Errors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 245-269, July.
    16. repec:cup:etheor:v:11:y:1995:i:1:p:122-50 is not listed on IDEAS
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    19. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    20. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    21. Nilsson, Birger, 2002. "International Asset Pricing and the Benefits from World Market Diversification," Working Papers 2002:1, Lund University, Department of Economics.
    22. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahiri, Kajal & Liu, Fushang, 2005. "ARCH models for multi-period forecast uncertainty-a reality check using a panel of density forecasts," MPRA Paper 21693, University Library of Munich, Germany.
    2. Haas, Markus, 2010. "Covariance forecasts and long-run correlations in a Markov-switching model for dynamic correlations," Finance Research Letters, Elsevier, vol. 7(2), pages 86-97, June.
    3. Francisco Rubio & Xavier Mestre & Daniel P. Palomar, 2011. "Performance analysis and optimal selection of large mean-variance portfolios under estimation risk," Papers 1110.3460, arXiv.org.

    More about this item

    Keywords

    multivariate GARCH models; volatility forecasts; portfolio optimization; minimum variance portfolio;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lau:crdeep:04.10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gaëlle Sarda). General contact details of provider: http://edirc.repec.org/data/deelsch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.