IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225014392.html
   My bibliography  Save this article

The development pathway for hydrogen fuel cell heavy duty trucks in China: An energy-environment-economy life cycle assessment approach

Author

Listed:
  • Tian, Mei-Hui
  • Hu, Yu-Jie
  • Li, Chengjiang
  • Tao, Yao
  • Wang, Honglei

Abstract

Heavy-duty trucks (HDTs), heavily reliant on diesel fuel, pose significant challenges to transportation decarbonization. However, hydrogen fuel cell heavy-duty trucks (HFC-HDTs) offer potential for emission reduction. This study develops an energy-environment-economy (3E) analysis framework based on life cycle assessment (LCA) and proposes a bottom-up optimization model. This paper assessed carbon emissions, energy consumption, costs, and hydrogen fuel consumption structures across five scenarios, and proposed a development pathway for China's HDT sector. The findings show that achieving a 100 % share of HFC-HDT could reduce energy consumption by 116 Mtce across all regions, with carbon emissions peaking between 68.7 and 247 Mtce by 2030. Economic analysis shows that when the hydrogen vehicle alternative rate surpasses 36 %, its economic benefits outweigh those of diesel fuel efficiency improvements. East China is projected to have the highest cumulative hydrogen demand, reaching 414 MT. North, Central, East, and South China should focus on improving diesel truck efficiency by 2035 to control costs and emissions. After 2040, the Southwest, Northeast, and Northwest regions should leverage abundant green hydrogen resources to transition toward a high share of HFC-HDTs gradually. This study recommends phased emission reduction based on regional resource endowments, combining diesel truck efficiency upgrades with HFC-HDT deployment.

Suggested Citation

  • Tian, Mei-Hui & Hu, Yu-Jie & Li, Chengjiang & Tao, Yao & Wang, Honglei, 2025. "The development pathway for hydrogen fuel cell heavy duty trucks in China: An energy-environment-economy life cycle assessment approach," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225014392
    DOI: 10.1016/j.energy.2025.135797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Jiaze & Wang, Ge & Chen, Siyuan & Zhang, He & Qian, Jiaqi & Mao, Yuxuan, 2022. "Harnessing freight platforms to promote the penetration of long-haul heavy-duty hydrogen fuel-cell trucks," Energy, Elsevier, vol. 254(PA).
    2. Seo, Seung-Kwon & Yun, Dong-Yeol & Lee, Chul-Jin, 2020. "Design and optimization of a hydrogen supply chain using a centralized storage model," Applied Energy, Elsevier, vol. 262(C).
    3. Xi Yang & Chris P. Nielsen & Shaojie Song & Michael B. McElroy, 2022. "Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen," Nature Energy, Nature, vol. 7(10), pages 955-965, October.
    4. Yu, Biying & Tan, Jin-Xiao & Zhang, Shitong, 2024. "Uncertainties in the technological pathway towards low-carbon freight transport under carbon neutral target in China," Applied Energy, Elsevier, vol. 365(C).
    5. Simon Voelker & Niklas Groll & Marvin Bachmann & Leonard Mueller & Marcel Neumann & Theodoros Kossioris & Paul Muthyala & Bastian Lehrheuer & Marius Hofmeister & Andreas Vorholt & Katharina Schmitz & , 2024. "Towards carbon-neutral and clean propulsion in heavy-duty transportation with hydroformylated Fischer–Tropsch fuels," Nature Energy, Nature, vol. 9(10), pages 1220-1229, October.
    6. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    7. Choi, Wonjae & Yoo, Eunji & Seol, Eunsu & Kim, Myoungsoo & Song, Han Ho, 2020. "Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea," Applied Energy, Elsevier, vol. 265(C).
    8. Xu, Hao & Chen, Feng & Cheng, Jinping & Bai, Yucai & Zhao, Shuqing & Wu, Yiheng & Lu, Yin, 2025. "Hydrogen powered heavy-duty trucks may contribute CO2 emission increase instead of reduction under current hydrogen production structure in China," Energy, Elsevier, vol. 315(C).
    9. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    10. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    11. Hao, Xu & Ou, Shiqi & Lin, Zhenhong & He, Xin & Bouchard, Jessey & Wang, Hewu & Li, Liguo, 2022. "Evaluating the current perceived cost of ownership for buses and trucks in China," Energy, Elsevier, vol. 254(PA).
    12. Changxiang Lu & Shaochuan Fu & Jiaqi Fang & Jikai Huang & Yong Ye & Arunava Majumder, 2021. "Analysis of Factors Affecting Freight Demand Based on Input-Output Model," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-19, March.
    13. Shi, Wei & Zhang, Yue-Jun & Liu, Jing-Yue, 2024. "Investigating the role of emissions trading system in reducing enterprise energy intensity: Evidence from China," Energy Economics, Elsevier, vol. 140(C).
    14. Dongliang, Wang & Wenliang, Meng & Huairong, Zhou & Guixian, Li & Yong, Yang & Hongwei, Li, 2021. "Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission," Energy, Elsevier, vol. 231(C).
    15. Krishnan, Venkat & Gonzalez-Marciaga, Lizbeth & McCalley, James, 2014. "A planning model to assess hydrogen as an alternative fuel for national light-duty vehicle portfolio," Energy, Elsevier, vol. 73(C), pages 943-957.
    16. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    17. Li, Weiqi & Fu, Feng & Ma, Linwei & Liu, Pei & Li, Zheng & Dai, Yaping, 2013. "A process-based model for estimating the well-to-tank cost of gasoline and diesel in China," Applied Energy, Elsevier, vol. 102(C), pages 718-725.
    18. Lazzaretto, A. & Toffolo, A., 2004. "Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design," Energy, Elsevier, vol. 29(8), pages 1139-1157.
    19. Dong, Jun & Chi, Yong & Zou, Daoan & Fu, Chao & Huang, Qunxing & Ni, Mingjiang, 2014. "Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study," Applied Energy, Elsevier, vol. 114(C), pages 400-408.
    20. Acheampong, Alex O. & Dzator, Janet & Dzator, Michael & Salim, Ruhul, 2022. "Unveiling the effect of transport infrastructure and technological innovation on economic growth, energy consumption and CO2 emissions," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    21. Muhammad Rasool & Kaveh Khalilpour & Ahmad Rafiee & Iftekhar Karimi & Reinhard Madlener, 2021. "Evaluation of Alternative Power-to-Chemical Pathways for Renewable Energy Exports," FCN Working Papers 4/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    22. Lu, Qiang & Zhang, Bo & Yang, Shichun & Peng, Zhaoxia, 2022. "Life cycle assessment on energy efficiency of hydrogen fuel cell vehicle in China," Energy, Elsevier, vol. 257(C).
    23. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    2. Chen, Xiaoyuan & Pang, Zhou & Jiang, Shan & Zhang, Mingshun & Feng, Juan & Fu, Lin & Shen, Boyang, 2023. "A novel LH2/GH2/battery multi-energy vehicle supply station using 100% local wind energy: Technical, economic and environmental perspectives," Energy, Elsevier, vol. 270(C).
    3. Yu, Biying & Tan, Jin-Xiao & Zhang, Shitong, 2024. "Uncertainties in the technological pathway towards low-carbon freight transport under carbon neutral target in China," Applied Energy, Elsevier, vol. 365(C).
    4. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    5. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    6. Chen, Leyuan & Wang, Yao & Jiang, Yancui & Zhang, Caizhi & Liao, Quan & Li, Jun & Wu, Jihao & Gao, Xin, 2024. "Life cycle assessment of liquid hydrogen fuel for vehicles with different production routes in China," Energy, Elsevier, vol. 299(C).
    7. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    8. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Hao, Han & Liu, Feiqi & Liu, Zongwei & Zhao, Fuquan, 2016. "Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions," Applied Energy, Elsevier, vol. 181(C), pages 391-398.
    10. Xuanwei Zhao & Jinsong Han, 2025. "How Is Transportation Sector Low-Carbon (TSLC) Research Developing After the Paris Agreement (PA)? A Decade Review," Sustainability, MDPI, vol. 17(5), pages 1-28, March.
    11. Sun, Shouheng & Ertz, Myriam, 2022. "Life cycle assessment and risk assessment of liquefied natural gas vehicles promotion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Dong, Lijun & Kang, Xiaojun & Pan, Mengqi & Zhao, Man & Zhang, Feng & Yao, Hong, 2020. "B-matching-based optimization model for energy allocation in sea surface monitoring," Energy, Elsevier, vol. 192(C).
    14. Hao, Xiaoli & Miao, Erxiang & Sun, Qingyu & Li, Ke & Wen, Shufang & Wu, Haitao, 2025. "When climate policy's up in the air: How digital technology impacts corporate energy intensity," Energy Economics, Elsevier, vol. 144(C).
    15. Li, Weiqi & Dai, Yaping & Ma, Linwei & Hao, Han & Lu, Haiyan & Albinson, Rosemary & Li, Zheng, 2015. "Oil-saving pathways until 2030 for road freight transportation in China based on a cost-optimization model," Energy, Elsevier, vol. 86(C), pages 369-384.
    16. Sungmi Bae & Eunhan Lee & Jinil Han, 2020. "Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    17. Zhao, Xiaohuan & Jiang, Jiang & Mao, Zhengsong, 2023. "Effect of filter material and porosity on the energy storage capacity characteristics of diesel particulate filter thermoelectric conversion mobile energy storage system," Energy, Elsevier, vol. 283(C).
    18. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    19. Li, Chengjiang & Hao, Qianwen & Zhang, Wei & Wang, Shiyuan & Yang, Jing, 2025. "Development strategies for green hydrogen, green ammonia, and green methanol in transportation," Renewable Energy, Elsevier, vol. 246(C).
    20. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225014392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.