IDEAS home Printed from https://ideas.repec.org/p/ris/fcnwpa/2021_004.html
   My bibliography  Save this paper

Evaluation of Alternative Power-to-Chemical Pathways for Renewable Energy Exports

Author

Listed:

Abstract

Over the last five decades, there have been a few phases of interest in the so-called hydrogen economy, stemming from the need for either energy security enhancement or climate change mitigation. None of these phases has been successful in a major market development mainly due to the lack of cost competitiveness and partially due to technology readiness challenges. Nevertheless, a new phase has begun very recently, which despite holding original objectives has a new motivation to be fully green, based on renewable energy. This new movement has already initiated bipartisan cooperation of some energy importing countries and those with abundant renewable energy resources and supporting infrastructure. For example, the abundance of renewable resources and a stable economy of Australia can attract investments in building these green value chains with countries such as Singapore, South Korea, Japan, and those even further distant like in Europe. One key challenge in this context is the diversity of pathways for the (national and international) export of non-electricity renewable energy. This poses another challenge, i.e., the need for an agnostic tool for comparing various supply chain pathways fairly while considering various techno-economic factors such as renewable energy sources, hydrogen production and conversion technologies, transport, and destination markets, along with all associated uncertainties. This paper addresses the above challenge by introducing a probabilistic decision analysis cycle methodology for evaluating various renewable energy supply chain pathways based on the hydrogen vector. The decision support tool is generic and can accommodate any kind of renewable chemical and fuel supply chain option. As a case study, we have investigated eight supply chain options composed of two electrolysers (alkaline and membrane) and four carrier options (compressed hydrogen, liquefied hydrogen, methanol, and ammonia) for export from Australian ports to three destinations in Singapore, Japan, and Germany. The results clearly show the complexity of decision making induced by multiple factors.

Suggested Citation

  • Rasool, Muhammad & Khalilpour, Kaveh & Rafiee, Ahmad & Karimi, Iftekhar & Madlener, Reinhard, 2021. "Evaluation of Alternative Power-to-Chemical Pathways for Renewable Energy Exports," FCN Working Papers 4/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Apr 2023.
  • Handle: RePEc:ris:fcnwpa:2021_004
    as

    Download full text from publisher

    File URL: https://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaacaekwhk
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas, Sydney & Dawe, Richard A, 2003. "Review of ways to transport natural gas energy from countries which do not need the gas for domestic use," Energy, Elsevier, vol. 28(14), pages 1461-1477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madlener, Reinhard & Sheykhha, Siamak & Briglauer, Wolfgang, 2022. "The electricity- and CO2-saving potentials offered by regulation of European video-streaming services," Energy Policy, Elsevier, vol. 161(C).
    2. Schmitz, Hendrik & Madlener, Reinhard, 2021. "Preferences for Energy Retrofit Investments Among Low-income Renters," FCN Working Papers 8/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Liu, Xueying & Madlener, Reinhard, 2021. "Economic Benefits of Direct Current Technology for Private Households and Peer-to-Peer Trading in Germany," FCN Working Papers 7/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Sajid & Farhan Ahmed & Shafique Ahmed & Aadil Panhwar, 2018. "Viability of Liquefied Natural Gas (LNG) in Pakistan," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 146-154.
    2. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    3. Hamidzadeh, Zeinab & Sattari, Sourena & Soltanieh, Mohammad & Vatani, Ali, 2020. "Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone," Energy, Elsevier, vol. 203(C).
    4. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    5. Gomes Relva, Stefania & Oliveira da Silva, Vinícius & Peyerl, Drielli & Veiga Gimenes, André Luiz & Molares Udaeta, Miguel Edgar, 2020. "Regulating the electro-energetic use of natural gas by gas-to-wire offshore technology: Case study from Brazil," Utilities Policy, Elsevier, vol. 66(C).
    6. Sanya Du & Yixin Qu & Hui Li & Xiaohui Yu, 2022. "Methane Adsorption Properties in Biomaterials: A Possible Route to Gas Storage and Transportation," Energies, MDPI, vol. 15(12), pages 1-14, June.
    7. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.
    8. Brito, T.L.F. & Galvão, C. & Fonseca, A.F. & Costa, H.K.M. & Moutinho dos Santos, E., 2022. "A review of gas-to-wire (GtW) projects worldwide: State-of-art and developments," Energy Policy, Elsevier, vol. 163(C).
    9. Takeya, Satoshi & Mimachi, Hiroko & Murayama, Tetsuro, 2018. "Methane storage in water frameworks: Self-preservation of methane hydrate pellets formed from NaCl solutions," Applied Energy, Elsevier, vol. 230(C), pages 86-93.
    10. Guo, Hao & Tang, Qixiong & Gong, Maoqiong & Cheng, Kuiwei, 2018. "Optimization of a novel liquefaction process based on Joule–Thomson cycle utilizing high-pressure natural gas exergy by genetic algorithm," Energy, Elsevier, vol. 151(C), pages 696-706.
    11. Khalilpour, Rajab & Karimi, I.A., 2012. "Evaluation of utilization alternatives for stranded natural gas," Energy, Elsevier, vol. 40(1), pages 317-328.
    12. Cao, Yan & Mohammadian, Mehrnoush & Pirouzfar, Vahid & Su, Chia-Hung & Khan, Afrasyab, 2021. "Break Even Point analysis of liquefied natural gas process and optimization of its refrigeration cycles with technical and economic considerations," Energy, Elsevier, vol. 237(C).
    13. Castelo Branco, David A. & Szklo, Alexandre S. & Schaeffer, Roberto, 2010. "Co2e emissions abatement costs of reducing natural gas flaring in Brazil by investing in offshore GTL plants producing premium diesel," Energy, Elsevier, vol. 35(1), pages 158-167.
    14. Saghi Raeisdanaei & Vahid Pirouzfar & Chia-Hung Su, 2022. "Technical and economic assessment of processes for the LNG production in cycles with expander and refrigeration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13407-13425, November.
    15. Sun, Qibei & Kang, Yong Tae, 2016. "Review on CO2 hydrate formation/dissociation and its cold energy application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 478-494.
    16. Szoplik, Jolanta, 2016. "Improving the natural gas transporting based on the steady state simulation results," Energy, Elsevier, vol. 109(C), pages 105-116.
    17. Egging, Ruud & Holz, Franziska & Gabriel, Steven A., 2010. "The World Gas Model," Energy, Elsevier, vol. 35(10), pages 4016-4029.
    18. Raghoo, Pravesh & Surroop, Dinesh & Wolf, Franziska, 2017. "Natural gas to improve energy security in Small Island Developing States: A techno-economic analysis," Development Engineering, Elsevier, vol. 2(C), pages 92-98.
    19. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    20. Saad A. Al-Sobhi & Ali Elkamel & Fatih S. Erenay & Munawar A. Shaik, 2018. "Simulation-Optimization Framework for Synthesis and Design of Natural Gas Downstream Utilization Networks," Energies, MDPI, vol. 11(2), pages 1-19, February.

    More about this item

    Keywords

    Hydrogen economy; renewable hydrogen vector; renewable energy utilisation; renewable energy supply chain; decision analysis cycle; expected levelised cost of hydrogen (ELCOH);
    All these keywords.

    JEL classification:

    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • O21 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Planning Models; Planning Policy
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • P48 - Political Economy and Comparative Economic Systems - - Other Economic Systems - - - Legal Institutions; Property Rights; Natural Resources; Energy; Environment; Regional Studies
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q35 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Hydrocarbon Resources
    • Q37 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Issues in International Trade
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:fcnwpa:2021_004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hendrik Schmitz (email available below). General contact details of provider: https://edirc.repec.org/data/fceonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.