IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4261-d835441.html
   My bibliography  Save this article

Methane Adsorption Properties in Biomaterials: A Possible Route to Gas Storage and Transportation

Author

Listed:
  • Sanya Du

    (Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

  • Yixin Qu

    (College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

  • Hui Li

    (Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

  • Xiaohui Yu

    (National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Methane can be stored in biomaterials rapidly in hydrate form with low energy consumption. Considering the high cost of biomaterials (vegetables or fruits), agricultural wastes may be more practical. In this work, the characteristics of methane storage in two low-cost agricultural wastes, eggplant, and static water, are studied and compared. The methane adsorption rates and capacities were greatly enhanced in three biomaterials compared with that in the static water, while only corncob pith maintained relatively high gas adsorption capacity (72 v / v ) and adsorption rate (~0.0300 MPa/min) in repeatable gas adsorption-desorption processes. Further investigations on the gas adsorption behavior in the corncob pith revealed that the porous structure of corncob pith generates larger specific surface areas, providing more nucleation sites for hydrate nucleation. In addition, the hydrophobic and hydrophilic performance of corncob pith components also affect the hydrate formation. The porous structure of corncob pith reduces its water activity, which decreases the stability of methane hydrate (~0.6 MPa higher at 273.15 K for equilibrium pressure than bulk phase). These results demonstrate the great gas adsorption performance and mild storage-transportation conditions of low-cost agricultural wastes and provide significant information in promoting their application in gas storage and transportation.

Suggested Citation

  • Sanya Du & Yixin Qu & Hui Li & Xiaohui Yu, 2022. "Methane Adsorption Properties in Biomaterials: A Possible Route to Gas Storage and Transportation," Energies, MDPI, vol. 15(12), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4261-:d:835441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas, Sydney & Dawe, Richard A, 2003. "Review of ways to transport natural gas energy from countries which do not need the gas for domestic use," Energy, Elsevier, vol. 28(14), pages 1461-1477.
    2. Yu Zou & Jun Fu & Zhi Chen & Luquan Ren, 2021. "Field Decomposition of Corn Cob in Seasonally Frozen Soil and Its Intrinsic Influencing Factors: The Case of Northeast China," Agriculture, MDPI, vol. 11(6), pages 1-13, June.
    3. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Sajid & Farhan Ahmed & Shafique Ahmed & Aadil Panhwar, 2018. "Viability of Liquefied Natural Gas (LNG) in Pakistan," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 146-154.
    2. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    3. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    4. Stanislav L. Borodin & Nail G. Musakaev & Denis S. Belskikh, 2022. "Mathematical Modeling of a Non-Isothermal Flow in a Porous Medium Considering Gas Hydrate Decomposition: A Review," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    5. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    6. Lei Wang & Jin Yang & Lilin Li & Ting Sun & Dongsheng Xu, 2022. "Study on the Mechanical Properties of Natural Gas Hydrate Reservoirs with Multicomponent under Different Engineering Conditions," Energies, MDPI, vol. 15(23), pages 1-23, November.
    7. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    8. Brito, T.L.F. & Galvão, C. & Fonseca, A.F. & Costa, H.K.M. & Moutinho dos Santos, E., 2022. "A review of gas-to-wire (GtW) projects worldwide: State-of-art and developments," Energy Policy, Elsevier, vol. 163(C).
    9. Mu, Liang & Tan, Qiqi & Li, Xianlong & Zhang, Qingyun & Cui, Qingyan, 2023. "A novel method to store methane by forming hydrate in the high water-oil ratio emulsions," Energy, Elsevier, vol. 264(C).
    10. Khalilpour, Rajab & Karimi, I.A., 2012. "Evaluation of utilization alternatives for stranded natural gas," Energy, Elsevier, vol. 40(1), pages 317-328.
    11. Xie, Yan & Zheng, Tao & Zhong, Jin-Rong & Zhu, Yu-Jie & Wang, Yun-Fei & Zhang, Yu & Li, Rui & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Experimental research on self-preservation effect of methane hydrate in porous sediments," Applied Energy, Elsevier, vol. 268(C).
    12. Cao, Yan & Mohammadian, Mehrnoush & Pirouzfar, Vahid & Su, Chia-Hung & Khan, Afrasyab, 2021. "Break Even Point analysis of liquefied natural gas process and optimization of its refrigeration cycles with technical and economic considerations," Energy, Elsevier, vol. 237(C).
    13. Saghi Raeisdanaei & Vahid Pirouzfar & Chia-Hung Su, 2022. "Technical and economic assessment of processes for the LNG production in cycles with expander and refrigeration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13407-13425, November.
    14. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    15. Sun, Qibei & Kang, Yong Tae, 2016. "Review on CO2 hydrate formation/dissociation and its cold energy application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 478-494.
    16. Nail G. Musakaev & Marat K. Khasanov, 2020. "Solution of the Problem of Natural Gas Storages Creating in Gas Hydrate State in Porous Reservoirs," Mathematics, MDPI, vol. 8(1), pages 1-14, January.
    17. Jyoti Shanker Pandey & Saad Khan & Nicolas von Solms, 2022. "Screening of Low-Dosage Methanol as a Hydrate Promoter," Energies, MDPI, vol. 15(18), pages 1-20, September.
    18. Egging, Ruud & Holz, Franziska & Gabriel, Steven A., 2010. "The World Gas Model," Energy, Elsevier, vol. 35(10), pages 4016-4029.
    19. Raghoo, Pravesh & Surroop, Dinesh & Wolf, Franziska, 2017. "Natural gas to improve energy security in Small Island Developing States: A techno-economic analysis," Development Engineering, Elsevier, vol. 2(C), pages 92-98.
    20. Warintip Chanakro & Chutikan Jaikwang & Katipot Inkong & Santi Kulprathipanja & Pramoch Rangsunvigit, 2020. "Comparative Study of Tetra-N-Butyl Ammonium Bromide and Cyclopentane on the Methane Hydrate Formation and Dissociation," Energies, MDPI, vol. 13(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4261-:d:835441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.