IDEAS home Printed from https://ideas.repec.org/p/ris/fcnwpa/2021_007.html
   My bibliography  Save this paper

Economic Benefits of Direct Current Technology for Private Households and Peer-to-Peer Trading in Germany

Author

Listed:
  • Liu, Xueying

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

  • Madlener, Reinhard

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

Abstract

With the increased adoption of solar photovoltaics (PV) and batteries, and the use of electronics and appliances powered by direct current (DC), e.g. heat pumps, and electric vehicles (EVs), DC technologies offer higher energy efficiency compared to the entrenched alternating current (AC) technologies. However, the adoption of DC infrastructure is limited due to path dependency and lock-in effects of the currently dominant electric infrastructure based on AC technology. Efficiency gains in energy communities and for households may facilitate the wider-scale adoption of DC technologies. In this study, we simulate 600 household load profiles based on twelve different representative household types and estimate the possible energy cost savings of a DC architecture compared to an AC architecture under various electricity prices and feed-in-tariff levels. This is done for different combinations of battery and PV sizes, and for the case of a peer-to-peer (P2P) trading community. The results show that the DC home yields cost savings of around €90 p.a. for the median household when compared to an AC home. Moreover, we find that neither the share of DC load nor household characteristics impacts cost savings significantly, while the total load remains the most important factor influencing the cost-saving potential. In addition, while cost savings do not necessarily increase with larger PV and battery sizes, they do increase with the possibility of households to engage in P2P trading. The results yield an improved understanding regarding the cost-saving potentials of DC homes and their expected diffusion in Germany. This is especially relevant for future large-scale adoption of solar PV, batteries, and EVs in the future, thus helping both policy-makers and companies alike to better assess the market potential of DC homes.

Suggested Citation

  • Liu, Xueying & Madlener, Reinhard, 2021. "Economic Benefits of Direct Current Technology for Private Households and Peer-to-Peer Trading in Germany," FCN Working Papers 7/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  • Handle: RePEc:ris:fcnwpa:2021_007
    as

    Download full text from publisher

    File URL: https://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaablzxhco
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).
    2. Madlener, Reinhard & Sheykhha, Siamak & Briglauer, Wolfgang, 2022. "The electricity- and CO2-saving potentials offered by regulation of European video-streaming services," Energy Policy, Elsevier, vol. 161(C).
    3. Karami, Mahdi & Madlener, Reinhard, 2022. "Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences," Applied Energy, Elsevier, vol. 306(PB).
    4. Atasoy, Ayse Tugba & Madlener, Reinhard, 2020. "Default vs. Active Choices: An Experiment on Electricity Tariff Switching," FCN Working Papers 7/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    5. Wolff, Stefanie & Madlener, Reinhard, 2020. "Willing to Pay? Spatial Heterogeneity of e-Vehicle Charging Preferences in Germany," FCN Working Papers 9/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    6. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    7. Rasool, Muhammad & Khalilpour, Kaveh & Rafiee, Ahmad & Karimi, Iftekhar & Madlener, Reinhard, 2021. "Evaluation of Alternative Power-to-Chemical Pathways for Renewable Energy Exports," FCN Working Papers 4/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Apr 2023.
    8. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
    9. Fabianek, Paul & Madlener, Reinhard, 2021. "Techno-Economic Analysis and Optimal Sizing of Hybrid PV-Wind Systems for Hydrogen Production by PEM Electrolysis in California and Germany," FCN Working Papers 2/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    10. Wimmers, Alexander & Madlener, Reinhard, 2020. "The European Market for Guarantees of Origin for Green Electricity: A Scenario-Based Evaluation of Trading under Uncertainty," FCN Working Papers 17/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised 01 Jun 2023.
    11. Gerber, Daniel L. & Vossos, Vagelis & Feng, Wei & Marnay, Chris & Nordman, Bruce & Brown, Richard, 2018. "A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings," Applied Energy, Elsevier, vol. 210(C), pages 1167-1187.
    12. Glasgo, Brock & Azevedo, Inês Lima & Hendrickson, Chris, 2016. "How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings," Applied Energy, Elsevier, vol. 180(C), pages 66-75.
    13. Fabianek, Paul & Glensk, Barbara & Madlener, Reinhard, 2021. "A Sequential Real Options Analysis for Renewable Power-to-Hydrogen Plants in Germany and California," FCN Working Papers 1/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    14. Hellwig, Robert & Atasoy, Ayse Tugba & Madlener, Reinhard, 2020. "The Impact of Social Preferences and Information on the Willingness to Pay for Fairtrade Products," FCN Working Papers 6/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schmitz, Hendrik & Madlener, Reinhard, 2021. "Preferences for Energy Retrofit Investments Among Low-income Renters," FCN Working Papers 8/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    2. Schöpper, Yannick & Digmayer, Claas & Bartusch, Raphaela & Ebrahim, Ola & Hermens, Sarah & Nejabat, Razieh & Steireif, Niklas & Wendorff, Jannik & Jakobs, Eva-Maria & Lohrberg, Frank & Madlener, Reinh, 2023. "Developing a Niche Readiness Level Model to Assess Socio-Economic Maturity: The Case of DC Technologies in the Transition to Flexible Electrical Networks," FCN Working Papers 11/2023, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmitz, Hendrik & Madlener, Reinhard, 2021. "Preferences for Energy Retrofit Investments Among Low-income Renters," FCN Working Papers 8/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    2. Fabianek, Paul & Glensk, Barbara & Madlener, Reinhard, 2021. "A Sequential Real Options Analysis for Renewable Power-to-Hydrogen Plants in Germany and California," FCN Working Papers 1/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Madlener, Reinhard & Sheykhha, Siamak & Briglauer, Wolfgang, 2022. "The electricity- and CO2-saving potentials offered by regulation of European video-streaming services," Energy Policy, Elsevier, vol. 161(C).
    4. Walter, Antonia & Held, Maximilian & Pareschi, Giacomo & Pengg, Hermann & Madlener, Reinhard, 2020. "Decarbonizing the European Automobile Fleet: Impacts of 1.5 °C-compliant Climate Policies in Germany and Norway," FCN Working Papers 18/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    5. Schöpper, Yannick & Digmayer, Claas & Bartusch, Raphaela & Ebrahim, Ola & Hermens, Sarah & Nejabat, Razieh & Steireif, Niklas & Wendorff, Jannik & Jakobs, Eva-Maria & Lohrberg, Frank & Madlener, Reinh, 2023. "Developing a Niche Readiness Level Model to Assess Socio-Economic Maturity: The Case of DC Technologies in the Transition to Flexible Electrical Networks," FCN Working Papers 11/2023, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    6. Wolff, Stefanie & Madlener, Reinhard, 2020. "Willing to Pay? Spatial Heterogeneity of e-Vehicle Charging Preferences in Germany," FCN Working Papers 9/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    7. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    8. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2020. "Electrical system architectures for building-integrated photovoltaics: A comparative analysis using a modelling framework in Modelica," Applied Energy, Elsevier, vol. 261(C).
    9. Keteng Jiang & Haibo Li & Xi Ye & Yi Lei & Keng-Weng Lao & Shuqing Zhang & Xianfa Hu, 2022. "Energy Efficiency Evaluation and Revenue Distribution of DC Power Distribution Systems in Nearly Zero Energy Buildings," Energies, MDPI, vol. 15(15), pages 1-23, August.
    10. Eskander, Monica M. & Silva, Carlos A., 2023. "Techno-economic and environmental comparative analysis for DC microgrids in households: Portuguese and French household case study," Applied Energy, Elsevier, vol. 349(C).
    11. Gerber, Daniel L. & Liou, Richard & Brown, Richard, 2019. "Energy-saving opportunities of direct-DC loads in buildings," Applied Energy, Elsevier, vol. 248(C), pages 274-287.
    12. Hasan Erteza Gelani & Faizan Dastgeer & Sayyad Ahmad Ali Shah & Faisal Saeed & Muhammad Hassan Yousuf & Hafiz Muhammad Waqas Afzal & Abdullah Bilal & Md. Shahariar Chowdhury & Kuaanan Techato & Sittip, 2022. "Comparative Efficiency and Sensitivity Analysis of AC and DC Power Distribution Paradigms for Residential Localities," Sustainability, MDPI, vol. 14(13), pages 1-52, July.
    13. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    14. Avpreet Othee & James Cale & Arthur Santos & Stephen Frank & Daniel Zimmerle & Omkar Ghatpande & Gerald Duggan & Daniel Gerber, 2023. "A Modeling Toolkit for Comparing AC and DC Electrical Distribution Efficiency in Buildings," Energies, MDPI, vol. 16(7), pages 1-46, March.
    15. Pena-Bello, A. & Barbour, E. & Gonzalez, M.C. & Patel, M.K. & Parra, D., 2019. "Optimized PV-coupled battery systems for combining applications: Impact of battery technology and geography," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 978-990.
    16. Patrik Ollas & Torbjörn Thiringer & Mattias Persson & Caroline Markusson, 2023. "Energy Loss Savings Using Direct Current Distribution in a Residential Building with Solar Photovoltaic and Battery Storage," Energies, MDPI, vol. 16(3), pages 1-21, January.
    17. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    18. Vagelis Vossos & Daniel L. Gerber & Melanie Gaillet-Tournier & Bruce Nordman & Richard Brown & Willy Bernal Heredia & Omkar Ghatpande & Avijit Saha & Gabe Arnold & Stephen M. Frank, 2022. "Adoption Pathways for DC Power Distribution in Buildings," Energies, MDPI, vol. 15(3), pages 1-23, January.
    19. Chai, Merlin & Bonthapalle, Dastagiri Reddy & Sobrayen, Lingeshwaren & Panda, Sanjib K. & Wu, Die & Chen, XiaoQing, 2018. "Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives," Applied Energy, Elsevier, vol. 231(C), pages 747-756.
    20. Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    More about this item

    Keywords

    DC technology; Choice of Technology; Diffusion; Industrial policy; Path dependence;
    All these keywords.

    JEL classification:

    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O25 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Industrial Policy
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O52 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Europe

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:fcnwpa:2021_007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hendrik Schmitz (email available below). General contact details of provider: https://edirc.repec.org/data/fceonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.