IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5726-d882026.html
   My bibliography  Save this article

Energy Efficiency Evaluation and Revenue Distribution of DC Power Distribution Systems in Nearly Zero Energy Buildings

Author

Listed:
  • Keteng Jiang

    (Tsinghua Sichuan Energy Internet Research Institute, Chengdu 610213, China)

  • Haibo Li

    (Tsinghua Sichuan Energy Internet Research Institute, Chengdu 610213, China)

  • Xi Ye

    (State Grid Sichuan Electric Power Company, Chengdu 610210, China)

  • Yi Lei

    (Tsinghua Sichuan Energy Internet Research Institute, Chengdu 610213, China)

  • Keng-Weng Lao

    (Department of Electrical and Computer Engineering, Macau University, Macau 999086, China)

  • Shuqing Zhang

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Xianfa Hu

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

Abstract

With the advantage of integrating distributed energy, storage and DC load with high efficiency, the DC distribution network recently attracted wide attention in the field of nearly zero energy buildings. Considering the large number of buildings and the enormous energy-saving potential, the distribution form and the revenue distribution are key factors affecting energy efficiency and operational economy. Aiming at the characteristics of AC and DC distribution topologies in nearly zero energy buildings, an energy efficiency evaluation method is proposed based on time-sequential power flow simulation, where the piecewise linear efficiency function of converters and dynamic line power loss model are established. Based on a DC distribution demonstration project, an AC power distribution system with the same boundary conditions is designed. The results show that the efficiency of DC distribution topology is about 6% higher than the AC system, while the efficiency advantage in office, hotel, commercial, educational and residential buildings in Beijing, Shenzhen and Shanghai varies from 0.6–4.96%, which shows a high correlation with the proportion of a high-power load, with Pearson correlation coefficient of 0.794. With the increase of DC load ratio and distributed power supply access capacity, the efficiency of the system will be improved accordingly. On the basis of this, a method to equalize DC distribution income in the nearly zero energy buildings power market is proposed. In addition, 15 typical scenarios of different cities were selected to evaluate efficiency and influencing factors. Finally, assessing the multi-stakeholder impact of DC retrofitting to balance the revenue generated by the DC distribution model suggests that transport costs should be raised by 8.2–13.1% to balance revenue with the equipment prices decreased by about 0.1 yuan/W.

Suggested Citation

  • Keteng Jiang & Haibo Li & Xi Ye & Yi Lei & Keng-Weng Lao & Shuqing Zhang & Xianfa Hu, 2022. "Energy Efficiency Evaluation and Revenue Distribution of DC Power Distribution Systems in Nearly Zero Energy Buildings," Energies, MDPI, vol. 15(15), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5726-:d:882026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5726/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5726/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gerber, Daniel L. & Vossos, Vagelis & Feng, Wei & Marnay, Chris & Nordman, Bruce & Brown, Richard, 2018. "A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings," Applied Energy, Elsevier, vol. 210(C), pages 1167-1187.
    2. Glasgo, Brock & Azevedo, Inês Lima & Hendrickson, Chris, 2016. "How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings," Applied Energy, Elsevier, vol. 180(C), pages 66-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianxiang Ma & Ziqi Hu & Yan Xu & Haoran Dong, 2022. "Fault Location Based on Comprehensive Grey Correlation Degree Analysis for Flexible DC Distribution Network," Energies, MDPI, vol. 15(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eskander, Monica M. & Silva, Carlos A., 2023. "Techno-economic and environmental comparative analysis for DC microgrids in households: Portuguese and French household case study," Applied Energy, Elsevier, vol. 349(C).
    2. Patrik Ollas & Torbjörn Thiringer & Mattias Persson & Caroline Markusson, 2023. "Energy Loss Savings Using Direct Current Distribution in a Residential Building with Solar Photovoltaic and Battery Storage," Energies, MDPI, vol. 16(3), pages 1-21, January.
    3. Chai, Merlin & Bonthapalle, Dastagiri Reddy & Sobrayen, Lingeshwaren & Panda, Sanjib K. & Wu, Die & Chen, XiaoQing, 2018. "Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives," Applied Energy, Elsevier, vol. 231(C), pages 747-756.
    4. Liu, Xueying & Madlener, Reinhard, 2021. "Economic Benefits of Direct Current Technology for Private Households and Peer-to-Peer Trading in Germany," FCN Working Papers 7/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    5. Vossos, Vagelis & Gerber, Daniel & Bennani, Youness & Brown, Richard & Marnay, Chris, 2018. "Techno-economic analysis of DC power distribution in commercial buildings," Applied Energy, Elsevier, vol. 230(C), pages 663-678.
    6. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2020. "Electrical system architectures for building-integrated photovoltaics: A comparative analysis using a modelling framework in Modelica," Applied Energy, Elsevier, vol. 261(C).
    7. Gerber, Daniel L. & Liou, Richard & Brown, Richard, 2019. "Energy-saving opportunities of direct-DC loads in buildings," Applied Energy, Elsevier, vol. 248(C), pages 274-287.
    8. Hasan Erteza Gelani & Faizan Dastgeer & Sayyad Ahmad Ali Shah & Faisal Saeed & Muhammad Hassan Yousuf & Hafiz Muhammad Waqas Afzal & Abdullah Bilal & Md. Shahariar Chowdhury & Kuaanan Techato & Sittip, 2022. "Comparative Efficiency and Sensitivity Analysis of AC and DC Power Distribution Paradigms for Residential Localities," Sustainability, MDPI, vol. 14(13), pages 1-52, July.
    9. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    10. Avpreet Othee & James Cale & Arthur Santos & Stephen Frank & Daniel Zimmerle & Omkar Ghatpande & Gerald Duggan & Daniel Gerber, 2023. "A Modeling Toolkit for Comparing AC and DC Electrical Distribution Efficiency in Buildings," Energies, MDPI, vol. 16(7), pages 1-46, March.
    11. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    12. Vagelis Vossos & Daniel L. Gerber & Melanie Gaillet-Tournier & Bruce Nordman & Richard Brown & Willy Bernal Heredia & Omkar Ghatpande & Avijit Saha & Gabe Arnold & Stephen M. Frank, 2022. "Adoption Pathways for DC Power Distribution in Buildings," Energies, MDPI, vol. 15(3), pages 1-23, January.
    13. Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    15. Saeed Habibi & Ramin Rahimi & Mehdi Ferdowsi & Pourya Shamsi, 2021. "DC Bus Voltage Selection for a Grid-Connected Low-Voltage DC Residential Nanogrid Using Real Data with Modified Load Profiles," Energies, MDPI, vol. 14(21), pages 1-19, October.
    16. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    17. Rémy Cleenwerck & Hakim Azaioud & Majid Vafaeipour & Thierry Coosemans & Jan Desmet, 2023. "Impact Assessment of Electric Vehicle Charging in an AC and DC Microgrid: A Comparative Study," Energies, MDPI, vol. 16(7), pages 1-17, April.
    18. Shaowu Li & Kunyi Chen & Qin Li & Qing Ai, 2022. "A Variable-Weather-Parameter MPPT Method Based on Equation Solution for Photovoltaic System with DC Bus," Energies, MDPI, vol. 15(18), pages 1-25, September.
    19. Keon-Woo Park & Chul-Hwan Kim, 2021. "Bi-Directional Power Flow in Switchgear with Static Transfer Switch Applied at Various Renewable Energies," Energies, MDPI, vol. 14(11), pages 1-11, May.
    20. Ravyts, Simon & Moschner, Jens D. & Yordanov, Georgi H. & Van den Broeck, Giel & Dalla Vecchia, Mauricio & Manganiello, Patrizio & Meuris, Marc & Driesen, Johan, 2020. "Impact of photovoltaic technology and feeder voltage level on the efficiency of façade building-integrated photovoltaic systems," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5726-:d:882026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.