IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v161y2022ics1364032122001216.html
   My bibliography  Save this article

Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight

Author

Listed:
  • Castillo-Calzadilla, T.
  • Cuesta, M.A.
  • Olivares-Rodriguez, C.
  • Macarulla, A.M.
  • Legarda, J.
  • Borges, C.E.

Abstract

The popularity of renewable energy systems has contributed significantly in the last years to the utility of low voltage direct current microgrids. However, these systems come with new challenges. This survey focuses on introducing a state-of-the-art low voltage direct current distribution system and sheds light on the challenges that must be faced in order to complete energy transition. This literature review was systematically carried out using the two largest scientific databases (SCOPUS and WOS) where the query (low voltage direct current microgrid) resulted in 198 articles. The purpose of this paper is not to reiterate the comparison of direct current with alternating current systems, which has already been discussed extensively. Instead, the objective of this survey is to assess the feasibility of the low voltage direct current distribution system and its impact on social development. To this end, this work provides valuable information for renewable energy planners, giving some insights or solutions to bridge the gap between the current energy network and the future DC energy microgrids. In particular, this article focuses on parameters such as grid topologies, distribution and voltage standardization efforts. The three major findings are: (i) the off-grid solutions enhance the efficiency rate in energy facilities (from 15% to 30%), and the vast majority of them are supported with energy storage systems to increase their reliability. However, in economic terms the most suitable systems still are the grid-connected solutions. Another finding is that (ii) the bus configurations are most used as well as the best in terms of their effectiveness to distribute low voltage and direct current energy within the microgrid. Lastly, (iii) the voltage value standardization around 48 V and 380 V, and even though there seems to be a clear convergence between them, the lack of agreement is delaying the massive implementation of these solutions worldwide. Finally, a novel assessment of social impacts and reflections on low voltage direct current microgrids is also included.

Suggested Citation

  • Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122001216
    DOI: 10.1016/j.rser.2022.112198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122001216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, W.X., 2009. "Optimally sizing of solar array and battery in a standalone photovoltaic system in Malaysia," Renewable Energy, Elsevier, vol. 34(1), pages 348-352.
    2. Rathore, Pushpendra Kumar Singh & Chauhan, Durg Singh & Singh, Rudra Pratap, 2019. "Decentralized solar rooftop photovoltaic in India: On the path of sustainable energy security," Renewable Energy, Elsevier, vol. 131(C), pages 297-307.
    3. San Martín, Idoia & Berrueta, Alberto & Sanchis, Pablo & Ursúa, Alfredo, 2018. "Methodology for sizing stand-alone hybrid systems: A case study of a traffic control system," Energy, Elsevier, vol. 153(C), pages 870-881.
    4. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).
    5. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    6. Martín-Antonio Rodríguez-Licea & Francisco-Javier Pérez-Pinal & Jose-Cruz Nuñez-Perez & Carlos-Alonso Herrera-Ramirez, 2018. "Nonlinear Robust Control for Low Voltage Direct-Current Residential Microgrids with Constant Power Loads," Energies, MDPI, vol. 11(5), pages 1-20, May.
    7. Fernando Antonanzas-Torres & Javier Antonanzas & Julio Blanco-Fernandez, 2021. "State-of-the-Art of Mini Grids for Rural Electrification in West Africa," Energies, MDPI, vol. 14(4), pages 1-21, February.
    8. Ehsan, Ali & Yang, Qiang, 2019. "Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand," Applied Energy, Elsevier, vol. 235(C), pages 1277-1288.
    9. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    10. Lotfi, Hossein & Khodaei, Amin, 2017. "Hybrid AC/DC microgrid planning," Energy, Elsevier, vol. 118(C), pages 37-46.
    11. Yao Liu & Xiaochao Hou & Xiaofeng Wang & Chao Lin & Josep M. Guerrero, 2016. "A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode," Energies, MDPI, vol. 9(8), pages 1-15, August.
    12. Gerber, Daniel L. & Vossos, Vagelis & Feng, Wei & Marnay, Chris & Nordman, Bruce & Brown, Richard, 2018. "A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings," Applied Energy, Elsevier, vol. 210(C), pages 1167-1187.
    13. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Sustainability and design assessment of rural hybrid microgrids in Venezuela," Energy, Elsevier, vol. 159(C), pages 229-242.
    14. Baudoin, Sylvain & Vechiu, Ionel & Camblong, Haritza & Vinassa, Jean-Michel & Barelli, Linda, 2016. "Sizing and control of a Solid Oxide Fuel Cell/Gas microTurbine hybrid power system using a unique inverter for rural microgrid integration," Applied Energy, Elsevier, vol. 176(C), pages 272-281.
    15. Waqas Javed & Dong Chen & Mohamed Emad Farrag & Yan Xu, 2019. "System Configuration, Fault Detection, Location, Isolation and Restoration: A Review on LVDC Microgrid Protections," Energies, MDPI, vol. 12(6), pages 1-30, March.
    16. Ghafoor, Abdul & Munir, Anjum, 2015. "Design and economics analysis of an off-grid PV system for household electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 496-502.
    17. Fragkos, Panagiotis & Paroussos, Leonidas, 2018. "Employment creation in EU related to renewables expansion," Applied Energy, Elsevier, vol. 230(C), pages 935-945.
    18. Soshinskaya, Mariya & Crijns-Graus, Wina H.J. & Guerrero, Josep M. & Vasquez, Juan C., 2014. "Microgrids: Experiences, barriers and success factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 659-672.
    19. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    20. Justo, Jackson John & Mwasilu, Francis & Lee, Ju & Jung, Jin-Woo, 2013. "AC-microgrids versus DC-microgrids with distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 387-405.
    21. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    22. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    23. Nacer, T. & Hamidat, A. & Nadjemi, O. & Bey, M., 2016. "Feasibility study of grid connected photovoltaic system in family farms for electricity generation in rural areas," Renewable Energy, Elsevier, vol. 96(PA), pages 305-318.
    24. Stephen Whaite & Brandon Grainger & Alexis Kwasinski, 2015. "Power Quality in DC Power Distribution Systems and Microgrids," Energies, MDPI, vol. 8(5), pages 1-22, May.
    25. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    26. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    27. Youssef Hennane & Abdelmajid Berdai & Jean-Philippe Martin & Serge Pierfederici & Farid Meibody-Tabar, 2021. "New Decentralized Control of Mesh AC Microgrids: Study, Stability, and Robustness Analysis," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    28. Patlitzianas, Konstantinos D., 2011. "Solar energy in Egypt: Significant business opportunities," Renewable Energy, Elsevier, vol. 36(9), pages 2305-2311.
    29. Lidula, N.W.A. & Rajapakse, A.D., 2011. "Microgrids research: A review of experimental microgrids and test systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 186-202, January.
    30. Kitson, J. & Williamson, S.J. & Harper, P.W. & McMahon, C.A. & Rosenberg, G. & Tierney, M.J. & Bell, K. & Gautam, B., 2018. "Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities," Energy, Elsevier, vol. 160(C), pages 142-153.
    31. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    32. Li, Jiaming, 2019. "Optimal sizing of grid-connected photovoltaic battery systems for residential houses in Australia," Renewable Energy, Elsevier, vol. 136(C), pages 1245-1254.
    33. Ching-Ming Lai & Yun-Hsiu Li & Yu-Huei Cheng & Jiashen Teh, 2018. "A High-Gain Reflex-Based Bidirectional DC Charger with Efficient Energy Recycling for Low-Voltage Battery Charging-Discharging Power Control," Energies, MDPI, vol. 11(3), pages 1-14, March.
    34. Planas, Estefanía & Andreu, Jon & Gárate, José Ignacio & Martínez de Alegría, Iñigo & Ibarra, Edorta, 2015. "AC and DC technology in microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 726-749.
    35. Li, Yanxue & Gao, Weijun & Ruan, Yingjun, 2018. "Performance investigation of grid-connected residential PV-battery system focusing on enhancing self-consumption and peak shaving in Kyushu, Japan," Renewable Energy, Elsevier, vol. 127(C), pages 514-523.
    36. Glasgo, Brock & Azevedo, Inês Lima & Hendrickson, Chris, 2016. "How much electricity can we save by using direct current circuits in homes? Understanding the potential for electricity savings and assessing feasibility of a transition towards DC powered buildings," Applied Energy, Elsevier, vol. 180(C), pages 66-75.
    37. Uddin, Kotub & Jackson, Tim & Widanage, Widanalage D. & Chouchelamane, Gael & Jennings, Paul A. & Marco, James, 2017. "On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system," Energy, Elsevier, vol. 133(C), pages 710-722.
    38. Vossos, Vagelis & Gerber, Daniel & Bennani, Youness & Brown, Richard & Marnay, Chris, 2018. "Techno-economic analysis of DC power distribution in commercial buildings," Applied Energy, Elsevier, vol. 230(C), pages 663-678.
    39. Bianchini, Augusto & Gambuti, Michele & Pellegrini, Marco & Saccani, Cesare, 2016. "Performance analysis and economic assessment of different photovoltaic technologies based on experimental measurements," Renewable Energy, Elsevier, vol. 85(C), pages 1-11.
    40. Ramli, Makbul A.M. & Hiendro, Ayong & Sedraoui, Khaled & Twaha, Ssennoga, 2015. "Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 489-495.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vitor Fernão Pires & Armando Pires & Armando Cordeiro, 2023. "DC Microgrids: Benefits, Architectures, Perspectives and Challenges," Energies, MDPI, vol. 16(3), pages 1-20, January.
    2. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    3. Ruben Zieba Falama & Virgil Dumbrava & Abdelaziz Salah Saidi & Etienne Tchoffo Houdji & Chokri Ben Salah & Serge Yamigno Doka, 2023. "A Comparative-Analysis-Based Multi-Criteria Assessment of On/Off-Grid-Connected Renewable Energy Systems: A Case Study," Energies, MDPI, vol. 16(3), pages 1-25, February.
    4. Md Shafiullah & Akib Mostabe Refat & Md Ershadul Haque & Dewan Mabrur Hasan Chowdhury & Md Sanower Hossain & Abdullah G. Alharbi & Md Shafiul Alam & Amjad Ali & Shorab Hossain, 2022. "Review of Recent Developments in Microgrid Energy Management Strategies," Sustainability, MDPI, vol. 14(22), pages 1-30, November.
    5. Kabulo Loji & Sachin Sharma & Nomhle Loji & Gulshan Sharma & Pitshou N. Bokoro, 2023. "Operational Issues of Contemporary Distribution Systems: A Review on Recent and Emerging Concerns," Energies, MDPI, vol. 16(4), pages 1-21, February.
    6. Mohseni, Soheil & Khalid, Roomana & Brent, Alan C., 2023. "Stochastic, resilience-oriented optimal sizing of off-grid microgrids considering EV-charging demand response: An efficiency comparison of state-of-the-art metaheuristics," Applied Energy, Elsevier, vol. 341(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    2. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    3. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2020. "Electrical system architectures for building-integrated photovoltaics: A comparative analysis using a modelling framework in Modelica," Applied Energy, Elsevier, vol. 261(C).
    4. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    5. Barelli, L. & Bidini, G. & Pelosi, D. & Ciupageanu, D.A. & Cardelli, E. & Castellini, S. & Lăzăroiu, G., 2020. "Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids," Energy, Elsevier, vol. 204(C).
    6. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    7. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    8. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    9. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    10. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    11. Daniel Akinyele & Juri Belikov & Yoash Levron, 2018. "Challenges of Microgrids in Remote Communities: A STEEP Model Application," Energies, MDPI, vol. 11(2), pages 1-35, February.
    12. Vossos, Vagelis & Gerber, Daniel & Bennani, Youness & Brown, Richard & Marnay, Chris, 2018. "Techno-economic analysis of DC power distribution in commercial buildings," Applied Energy, Elsevier, vol. 230(C), pages 663-678.
    13. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    14. Bui, Duong Minh & Chen, Shi-Lin & Lien, Keng-Yu & Chang, Yung-Ruei & Lee, Yih-Der & Jiang, Jheng-Lun, 2017. "Investigation on transient behaviours of a uni-grounded low-voltage AC microgrid and evaluation on its available fault protection methods: Review and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1417-1452.
    15. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    16. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    17. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    18. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    19. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    20. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122001216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.