IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2243-d502034.html
   My bibliography  Save this article

New Decentralized Control of Mesh AC Microgrids: Study, Stability, and Robustness Analysis

Author

Listed:
  • Youssef Hennane

    (Laboratoire Énergies & Mécanique Théorique et Appliquée LEMTA, Centre National de la Recherche Scientifique CNRS, Université de Lorraine, 54000 Nancy, France
    Electrical Engineering Department, National Superior School of Electricity and Mechanics (ENSEM), Hassan II University, Route d’El Jadida, km 7, Oasis, Casablanca BP 8118, Morocco)

  • Abdelmajid Berdai

    (Electrical Engineering Department, National Superior School of Electricity and Mechanics (ENSEM), Hassan II University, Route d’El Jadida, km 7, Oasis, Casablanca BP 8118, Morocco)

  • Jean-Philippe Martin

    (Laboratoire Énergies & Mécanique Théorique et Appliquée LEMTA, Centre National de la Recherche Scientifique CNRS, Université de Lorraine, 54000 Nancy, France)

  • Serge Pierfederici

    (Laboratoire Énergies & Mécanique Théorique et Appliquée LEMTA, Centre National de la Recherche Scientifique CNRS, Université de Lorraine, 54000 Nancy, France)

  • Farid Meibody-Tabar

    (Laboratoire Énergies & Mécanique Théorique et Appliquée LEMTA, Centre National de la Recherche Scientifique CNRS, Université de Lorraine, 54000 Nancy, France)

Abstract

In this paper, we investigated the power sharing issues in mesh islanded microgrids that contain several distributed generators (DGs) and loads connected to different points of common coupling (PCC). Firstly, an improved decentralized droop control algorithm is proposed to achieve the active and reactive power sharing of different DGs in reconfigurable mesh islanded microgrids. Accurate power sharing was obtained even though line parameters or the mesh microgrid configuration were unknown. Secondly a state-space model of the whole mesh microgrid was developed, considering several generators with their decentralized controllers, line feeders, and dynamic loads. This model was used to design parameters of droop controllers, to study the asymptotic stability and the robustness properties of the system. All strategies and analyses were validated by simulation based on the generic microgrid detailed in the standard IEEE 9bus test feeder.

Suggested Citation

  • Youssef Hennane & Abdelmajid Berdai & Jean-Philippe Martin & Serge Pierfederici & Farid Meibody-Tabar, 2021. "New Decentralized Control of Mesh AC Microgrids: Study, Stability, and Robustness Analysis," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2243-:d:502034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tayab, Usman Bashir & Roslan, Mohd Azrik Bin & Hwai, Leong Jenn & Kashif, Muhammad, 2017. "A review of droop control techniques for microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 717-727.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castillo-Calzadilla, T. & Cuesta, M.A. & Olivares-Rodriguez, C. & Macarulla, A.M. & Legarda, J. & Borges, C.E., 2022. "Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Yalin Liang & Yuyao He & Yun Niu, 2022. "Robust Errorless-Control-Targeted Technique Based on MPC for Microgrid with Uncertain Electric Vehicle Energy Storage Systems," Energies, MDPI, vol. 15(4), pages 1-23, February.
    3. Isaías Gomes & Rui Melicio & Victor M. F. Mendes, 2021. "Assessing the Value of Demand Response in Microgrids," Sustainability, MDPI, vol. 13(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quynh T.T Tran & Eleonora Riva Sanseverino & Gaetano Zizzo & Maria Luisa Di Silvestre & Tung Lam Nguyen & Quoc-Tuan Tran, 2020. "Real-Time Minimization Power Losses by Driven Primary Regulation in Islanded Microgrids," Energies, MDPI, vol. 13(2), pages 1-17, January.
    2. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    4. Elutunji Buraimoh & Innocent E. Davidson & Fernando Martinez-Rodrigo, 2019. "Fault Ride-Through Enhancement of Grid Supporting Inverter-Based Microgrid Using Delayed Signal Cancellation Algorithm Secondary Control," Energies, MDPI, vol. 12(20), pages 1-26, October.
    5. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
    6. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    7. Paolo Tenti & Tommaso Caldognetto, 2023. "Integration of Local and Central Control Empowers Cooperation among Prosumers and Distributors towards Safe, Efficient, and Cost-Effective Operation of Microgrids," Energies, MDPI, vol. 16(5), pages 1-23, February.
    8. Gabriel Nasser Doyle de Doile & Pedro Paulo Balestrassi & Miguel Castilla & Antonio Carlos Zambroni de Souza & Jaume Miret, 2023. "An Experimental Approach for Secondary Consensus Control Tuning for Inverter-Based Islanded Microgrids," Energies, MDPI, vol. 16(1), pages 1-15, January.
    9. Huang, Lei & Sun, Wei & Li, Qiyue & Li, Weitao, 2023. "Distributed real-time economic dispatch for islanded microgrids with dynamic power demand," Applied Energy, Elsevier, vol. 342(C).
    10. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    11. Peter Unruh & Maria Nuschke & Philipp Strauß & Friedrich Welck, 2020. "Overview on Grid-Forming Inverter Control Methods," Energies, MDPI, vol. 13(10), pages 1-21, May.
    12. Kamil Khan & Ahmad Kamal & Abdul Basit & Tanvir Ahmad & Haider Ali & Anwar Ali, 2019. "Economic Load Dispatch of a Grid-Tied DC Microgrid Using the Interior Search Algorithm," Energies, MDPI, vol. 12(4), pages 1-13, February.
    13. Tayab, Usman Bashir & Lu, Junwei & Yang, Fuwen & AlGarni, Tahani Saad & Kashif, Muhammad, 2021. "Energy management system for microgrids using weighted salp swarm algorithm and hybrid forecasting approach," Renewable Energy, Elsevier, vol. 180(C), pages 467-481.
    14. Alireza Gorjian & Mohsen Eskandari & Mohammad H. Moradi, 2023. "Conservation Voltage Reduction in Modern Power Systems: Applications, Implementation, Quantification, and AI-Assisted Techniques," Energies, MDPI, vol. 16(5), pages 1-36, March.
    15. Hussain Sarwar Khan & Muhammad Aamir & Muhammad Ali & Asad Waqar & Syed Umaid Ali & Junaid Imtiaz, 2019. "Finite Control Set Model Predictive Control for Parallel Connected Online UPS System under Unbalanced and Nonlinear Loads," Energies, MDPI, vol. 12(4), pages 1-20, February.
    16. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Rosini, A. & Labella, A. & Bonfiglio, A. & Procopio, R. & Guerrero, Josep M., 2021. "A review of reactive power sharing control techniques for islanded microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Hu, Jiefeng & Shan, Yinghao & Guerrero, Josep M. & Ioinovici, Adrian & Chan, Ka Wing & Rodriguez, Jose, 2021. "Model predictive control of microgrids – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    19. Triet Nguyen-Van, 2021. "A Power Control Method for Hybrid Electrical Accommodation Systems," Energies, MDPI, vol. 14(20), pages 1-12, October.
    20. Yamashita, Daniela Yassuda & Vechiu, Ionel & Gaubert, Jean-Paul, 2020. "A review of hierarchical control for building microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2243-:d:502034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.