IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1398-d749629.html
   My bibliography  Save this article

Robust Errorless-Control-Targeted Technique Based on MPC for Microgrid with Uncertain Electric Vehicle Energy Storage Systems

Author

Listed:
  • Yalin Liang

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)

  • Yuyao He

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)

  • Yun Niu

    (School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract

Regarding the microgrid with large-scale electric vehicle (EV) energy storage systems working at the vehicle-to-grid (V2G) mode, uncertain factors (e.g., the number of EVs feeding the microgrid shifts frequently) make the system unfixed, leading to the fact that it is difficult to precisely determine the real-time droop coefficients of the system, thereby degrading the performance of the traditional inverter control strategies that rely on the droop coefficients. To solve the problem, this paper proposes an errorless-control-targeted double control loop (DCL) technique based on robust MPC to control the microgrid with EV energy storage systems without using droop coefficients. Firstly, the structure of the DCL method is developed, with each component in the structure detailed. Compared to the traditional control strategies, the novel one regards the frequency, voltage, and currents as the control objectives instead of active/inactive power. It deserves to be mentioned that the frequency and voltage are regulated by proportional-integral controllers, while the currents are regulated by the finite control set model predictive control (FCS-MPC) method. Secondly, the impacts of system parameter uncertainties on the prediction accuracy of the FCS-MPC controller are analyzed clearly, illustrating that it is necessary to develop effective techniques to enhance the robustness of the controller. Thirdly, sliding mode observers (SMO) based on a novel hyperbolic function are constructed to detect the real-time disturbances, which can be used to generate voltage compensations by using automatic disturbance regulators. Then, the voltage compensations are adopted to establish a modified predicting plant model (PPM) used for the FCS-MPC controller. By using the proposed SMO-based disturbance detection and compensation techniques, the MPC controller gains a strong robustness against parameter uncertainties. Finally, a simulation is conducted on a microgrid system to verify the effectiveness of the proposed techniques, and the obtained results are compared with the traditional virtual synchronous machine (VSG) strategy relying on droop coefficients.

Suggested Citation

  • Yalin Liang & Yuyao He & Yun Niu, 2022. "Robust Errorless-Control-Targeted Technique Based on MPC for Microgrid with Uncertain Electric Vehicle Energy Storage Systems," Energies, MDPI, vol. 15(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1398-:d:749629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    2. Dwi Riana Aryani & Hwachang Song, 2016. "Coordination Control Strategy for AC/DC Hybrid Microgrids in Stand-Alone Mode," Energies, MDPI, vol. 9(6), pages 1-20, June.
    3. Gaber Magdy & Abualkasim Bakeer & Morsy Nour & Eduard Petlenkov, 2020. "A New Virtual Synchronous Generator Design Based on the SMES System for Frequency Stability of Low-Inertia Power Grids," Energies, MDPI, vol. 13(21), pages 1-17, October.
    4. Nan Jin & Chao Pan & Yanyan Li & Shiyang Hu & Jie Fang, 2020. "Model Predictive Control for Virtual Synchronous Generator with Improved Vector Selection and Reconstructed Current," Energies, MDPI, vol. 13(20), pages 1-16, October.
    5. Seghir Benhalima & Rezkallah Miloud & Ambrish Chandra, 2018. "Real-Time Implementation of Robust Control Strategies Based on Sliding Mode Control for Standalone Microgrids Supplying Non-Linear Loads," Energies, MDPI, vol. 11(10), pages 1-18, September.
    6. Youssef Hennane & Abdelmajid Berdai & Jean-Philippe Martin & Serge Pierfederici & Farid Meibody-Tabar, 2021. "New Decentralized Control of Mesh AC Microgrids: Study, Stability, and Robustness Analysis," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    7. Yalin Liang & Yuyao He & Yun Niu, 2020. "Microgrid Frequency Fluctuation Attenuation Using Improved Fuzzy Adaptive Damping-Based VSG Considering Dynamics and Allowable Deviation," Energies, MDPI, vol. 13(18), pages 1-23, September.
    8. Francesco Simmini & Tommaso Caldognetto & Mattia Bruschetta & Enrico Mion & Ruggero Carli, 2021. "Model Predictive Control for Efficient Management of Energy Resources in Smart Buildings," Energies, MDPI, vol. 14(18), pages 1-19, September.
    9. Antonio Camacho & Miguel Castilla & Franco Canziani & Carlos Moreira & Paulo Coelho & Mario Gomes & Pedro E. Mercado, 2017. "Performance Comparison of Grid-Faulty Control Schemes for Inverter-Based Industrial Microgrids," Energies, MDPI, vol. 10(12), pages 1-25, December.
    10. Prudhvi Kumar Gorijeevaram Reddy & Sattianadan Dasarathan & Vijayakumar Krishnasamy, 2021. "Investigation of Adaptive Droop Control Applied to Low-Voltage DC Microgrid," Energies, MDPI, vol. 14(17), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud F. Elmorshedy & Umashankar Subramaniam & Jagabar Sathik Mohamed Ali & Dhafer Almakhles, 2023. "Energy Management of Hybrid DC Microgrid with Different Levels of DC Bus Voltage for Various Load Types," Energies, MDPI, vol. 16(14), pages 1-32, July.
    2. Yan Yang & Yeqin Wang & Weixing Zhang & Zhenghao Li & Rui Liang, 2022. "Design of Adaptive Fuzzy Sliding-Mode Control for High-Performance Islanded Inverter in Micro-Grid," Energies, MDPI, vol. 15(23), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Rokicki, 2021. "Optimization of the Configuration and Operating States of Hybrid AC/DC Low Voltage Microgrid Using a Clonal Selection Algorithm with a Modified Hypermutation Operator," Energies, MDPI, vol. 14(19), pages 1-24, October.
    2. Yalin Liang & Yuyao He & Yun Niu, 2020. "Microgrid Frequency Fluctuation Attenuation Using Improved Fuzzy Adaptive Damping-Based VSG Considering Dynamics and Allowable Deviation," Energies, MDPI, vol. 13(18), pages 1-23, September.
    3. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    4. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    5. Lei Chen & Xiude Tu & Hongkun Chen & Jun Yang & Yayi Wu & Xin Shu & Li Ren, 2016. "Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads," Energies, MDPI, vol. 9(10), pages 1-21, September.
    6. Jingpeng Yue & Zhijian Hu & Chendan Li & Juan C. Vasquez & Josep M. Guerrero, 2017. "Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System," Energies, MDPI, vol. 10(7), pages 1-14, July.
    7. Isaías Gomes & Rui Melicio & Victor M. F. Mendes, 2021. "Assessing the Value of Demand Response in Microgrids," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    8. Abdulgader Alsharif & Chee Wei Tan & Razman Ayop & Ahmed Al Smin & Abdussalam Ali Ahmed & Farag Hamed Kuwil & Mohamed Mohamed Khaleel, 2023. "Impact of Electric Vehicle on Residential Power Distribution Considering Energy Management Strategy and Stochastic Monte Carlo Algorithm," Energies, MDPI, vol. 16(3), pages 1-22, January.
    9. Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.
    10. Jaime A. Rohten & Javier E. Muñoz & Esteban S. Pulido & José J. Silva & Felipe A. Villarroel & José R. Espinoza, 2021. "Very Low Sampling Frequency Model Predictive Control for Power Converters in the Medium and High-Power Range Applications," Energies, MDPI, vol. 14(1), pages 1-18, January.
    11. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    12. Paolo Tenti & Tommaso Caldognetto, 2022. "Generalized Control of the Power Flow in Local Area Energy Networks," Energies, MDPI, vol. 15(4), pages 1-21, February.
    13. Solomon Feleke & Balamurali Pydi & Raavi Satish & Hossam Kotb & Mohammed Alenezi & Mokhtar Shouran, 2023. "Frequency Stability Enhancement Using Differential-Evolution- and Genetic-Algorithm-Optimized Intelligent Controllers in Multiple Virtual Synchronous Machine Systems," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    14. Omar Makram Kamel & Ahmed A. Zaki Diab & Mohamed Metwally Mahmoud & Ameena Saad Al-Sumaiti & Hamdy M. Sultan, 2023. "Performance Enhancement of an Islanded Microgrid with the Support of Electrical Vehicle and STATCOM Systems," Energies, MDPI, vol. 16(4), pages 1-19, February.
    15. Mahdi Shahparasti & Mehdi Savaghebi & Majid Hosseinpour & Navid Rasekh, 2020. "Enhanced Circular Chain Control for Parallel Operation of Inverters in UPS Systems," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    16. Vjatseslav Skiparev & Ram Machlev & Nilanjan Roy Chowdhury & Yoash Levron & Eduard Petlenkov & Juri Belikov, 2021. "Virtual Inertia Control Methods in Islanded Microgrids," Energies, MDPI, vol. 14(6), pages 1-20, March.
    17. Maria Carmela Di Piazza, 2021. "Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids," Energies, MDPI, vol. 14(24), pages 1-3, December.
    18. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    19. Thyago Estrabis & Gabriel Gentil & Raymundo Cordero, 2021. "Development of a Resolver-to-Digital Converter Based on Second-Order Difference Generalized Predictive Control," Energies, MDPI, vol. 14(2), pages 1-22, January.
    20. Robert Salas-Puente & Silvia Marzal & Raúl González-Medina & Emilio Figueres & Gabriel Garcera, 2017. "Experimental Study of a Centralized Control Strategy of a DC Microgrid Working in Grid Connected Mode," Energies, MDPI, vol. 10(10), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1398-:d:749629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.