IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5383-d625090.html
   My bibliography  Save this article

Development of a Smart Energy Community by Coupling Neighbouring Community Microgrids for Enhanced Power Sharing Using Customised Droop Control

Author

Listed:
  • Sandipan Patra

    (School of Electrical and Electronic Engineering, Technological University Dublin, D07 EWV4 Dublin, Ireland)

  • Sreedhar Madichetty

    (École Centrale School of Engineering, Mahindra University, Hyderabad 500043, India)

  • Malabika Basu

    (School of Electrical and Electronic Engineering, Technological University Dublin, D07 EWV4 Dublin, Ireland)

Abstract

This article aims to develop a smart isolated energy community (EC) by coupling the neighbouring rural community microgrids (CMGs) with enhanced droop control for efficient power sharing. This recommended solution employs a power management (PM) based droop-control to enable independent neighbouring CMGs to share power on an available basis by not constraining CMG inverters to equal power sharing. During the grid-connected mode, the droop control may have different power setpoints of each CMG. However, during the standalone mode of operation, the power setpoint should be defined according to their power rating and availability to maintain the system stability. In this article, a PM strategy is developed to maintain the power setpoints of the autonomous CMGs. An improper selection of power setpoints in autonomous CMG can raise the DC link voltage to an unmanageable value and can cause an inadvertent shutdown of CMG. The suggested PM-based droop control enables the CMG inverter not to restrict the inverter to equal power share but to distribute its active power as available in an asymmetric way, if required. The dynamic performance of the proposed coupled system incorporated with two remote isolated CMGs is investigated in a MATLAB environment. Further, a laboratory prototype of the proposed system has been developed using a LabVIEW-based sbRIO controller to verify the efficacy of the proposed approach.

Suggested Citation

  • Sandipan Patra & Sreedhar Madichetty & Malabika Basu, 2021. "Development of a Smart Energy Community by Coupling Neighbouring Community Microgrids for Enhanced Power Sharing Using Customised Droop Control," Energies, MDPI, vol. 14(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5383-:d:625090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lahnaoui, Amin & Stenzel, Peter & Linssen, Jochen, 2018. "Techno-economic analysis of photovoltaic battery system configuration and location☆," Applied Energy, Elsevier, vol. 227(C), pages 497-505.
    2. Alberto Fichera & Elisa Marrasso & Maurizio Sasso & Rosaria Volpe, 2020. "Energy, Environmental and Economic Performance of an Urban Community Hybrid Distributed Energy System," Energies, MDPI, vol. 13(10), pages 1-19, May.
    3. Francesca Ceglia & Elisa Marrasso & Carlo Roselli & Maurizio Sasso, 2021. "Small Renewable Energy Community: The Role of Energy and Environmental Indicators for Power Grid," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    4. Di Lorenzo, Gianfranco & Rotondo, Sara & Araneo, Rodolfo & Petrone, Giovanni & Martirano, Luigi, 2021. "Innovative power-sharing model for buildings and energy communities," Renewable Energy, Elsevier, vol. 172(C), pages 1087-1102.
    5. Hao Liu & Nadali Mahmoudi & Kui Chen, 2018. "Microgrids Real-Time Pricing Based on Clustering Techniques," Energies, MDPI, vol. 11(6), pages 1-12, May.
    6. Tayab, Usman Bashir & Roslan, Mohd Azrik Bin & Hwai, Leong Jenn & Kashif, Muhammad, 2017. "A review of droop control techniques for microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 717-727.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geovane L. Reis & Danilo I. Brandao & João H. Oliveira & Lucas S. Araujo & Braz J. Cardoso Filho, 2022. "Case Study of Single-Controllable Microgrid: A Practical Implementation," Energies, MDPI, vol. 15(17), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Volpato, Gabriele & Carraro, Gianluca & Cont, Marco & Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2022. "General guidelines for the optimal economic aggregation of prosumers in energy communities," Energy, Elsevier, vol. 258(C).
    2. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2021. "Strategies for Controlling Microgrid Networks with Energy Storage Systems: A Review," Energies, MDPI, vol. 14(21), pages 1-45, November.
    3. Francesca Ceglia & Elisa Marrasso & Samiran Samanta & Maurizio Sasso, 2022. "Addressing Energy Poverty in the Energy Community: Assessment of Energy, Environmental, Economic, and Social Benefits for an Italian Residential Case Study," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    4. Ghoname Abdullah & Hidekazu Nishimura, 2021. "Techno-Economic Performance Analysis of a 40.1 kWp Grid-Connected Photovoltaic (GCPV) System after Eight Years of Energy Generation: A Case Study for Tochigi, Japan," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    5. Quynh T.T Tran & Eleonora Riva Sanseverino & Gaetano Zizzo & Maria Luisa Di Silvestre & Tung Lam Nguyen & Quoc-Tuan Tran, 2020. "Real-Time Minimization Power Losses by Driven Primary Regulation in Islanded Microgrids," Energies, MDPI, vol. 13(2), pages 1-17, January.
    6. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    7. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Maarja Meitern, 2022. "Does Access to Regulative Exemption Reduce Barriers for Energy Communities? A Dutch Case Study," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    9. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    10. Francesca Ceglia & Elisa Marrasso & Carlo Roselli & Maurizio Sasso, 2021. "Small Renewable Energy Community: The Role of Energy and Environmental Indicators for Power Grid," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    11. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
    12. Paolo Tenti & Tommaso Caldognetto, 2023. "Integration of Local and Central Control Empowers Cooperation among Prosumers and Distributors towards Safe, Efficient, and Cost-Effective Operation of Microgrids," Energies, MDPI, vol. 16(5), pages 1-23, February.
    13. Liu, Jin-peng & Zhang, Teng-xi & Zhu, Jiang & Ma, Tian-nan, 2018. "Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration," Energy, Elsevier, vol. 164(C), pages 560-574.
    14. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    15. Raimondi, Giulio & Spazzafumo, Giuseppe, 2023. "Exploring Renewable Energy Communities integration through a hydrogen Power-to-Power system in Italy," Renewable Energy, Elsevier, vol. 206(C), pages 710-721.
    16. Huang, Lei & Sun, Wei & Li, Qiyue & Li, Weitao, 2023. "Distributed real-time economic dispatch for islanded microgrids with dynamic power demand," Applied Energy, Elsevier, vol. 342(C).
    17. Kamil Khan & Ahmad Kamal & Abdul Basit & Tanvir Ahmad & Haider Ali & Anwar Ali, 2019. "Economic Load Dispatch of a Grid-Tied DC Microgrid Using the Interior Search Algorithm," Energies, MDPI, vol. 12(4), pages 1-13, February.
    18. Tayab, Usman Bashir & Lu, Junwei & Yang, Fuwen & AlGarni, Tahani Saad & Kashif, Muhammad, 2021. "Energy management system for microgrids using weighted salp swarm algorithm and hybrid forecasting approach," Renewable Energy, Elsevier, vol. 180(C), pages 467-481.
    19. Alireza Gorjian & Mohsen Eskandari & Mohammad H. Moradi, 2023. "Conservation Voltage Reduction in Modern Power Systems: Applications, Implementation, Quantification, and AI-Assisted Techniques," Energies, MDPI, vol. 16(5), pages 1-36, March.
    20. Xu, Bin & Luo, Yuemei & Xu, Renjing & Chen, Jianbao, 2021. "Exploring the driving forces of distributed energy resources in China: Using a semiparametric regression model," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5383-:d:625090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.