IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2320-d1083256.html
   My bibliography  Save this article

Integration of Local and Central Control Empowers Cooperation among Prosumers and Distributors towards Safe, Efficient, and Cost-Effective Operation of Microgrids

Author

Listed:
  • Paolo Tenti

    (Department of Information Engineering, University of Padova, 35131 Padova, Italy)

  • Tommaso Caldognetto

    (Department of Management and Engineering, University of Padova, 36100 Vicenza, Italy)

Abstract

The advent of energy communities will revolutionize the energy market. However, exploiting their full potential requires innovations in the structure and management of low-voltage grids. End users shall be aggregated within microgrids, where their physical interaction is possible and coordinated operation of power sources and energy storage systems can be achieved. Moreover, meshed network topologies will enable multiple paths for the power flow. The combination of smart control and meshed networks can dramatically improve microgrid performance in terms of power quality, efficiency, and resilience to transients and faults. Ubiquitous control of the power flow becomes possible, as well as active fault clearing and isolation of subgrids without tripping circuit breakers. This paper proposes a control approach that pursues such goals without requiring modification of control and communication hardware implemented in commercial inverters. Instead, a revision of control firmware, integrated with local measurements, allows retrofitting existing plants to improve microgrid operation. Further improvements may derive from the installation of community power sources and energy storage systems, which can extend microgrid operation to pursue demand response and islanding. The potential of the proposed control methods is demonstrated by simulation considering a standard microgrid under different operating conditions.

Suggested Citation

  • Paolo Tenti & Tommaso Caldognetto, 2023. "Integration of Local and Central Control Empowers Cooperation among Prosumers and Distributors towards Safe, Efficient, and Cost-Effective Operation of Microgrids," Energies, MDPI, vol. 16(5), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2320-:d:1083256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saša Vlahinić & Dubravko Franković & Vitomir Komen & Anamarija Antonić, 2019. "Reactive Power Compensation with PV Inverters for System Loss Reduction," Energies, MDPI, vol. 12(21), pages 1-17, October.
    2. Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.
    3. Paolo Tenti & Tommaso Caldognetto, 2022. "Generalized Control of the Power Flow in Local Area Energy Networks," Energies, MDPI, vol. 15(4), pages 1-21, February.
    4. Hossein Abedini & Tommaso Caldognetto & Paolo Mattavelli & Paolo Tenti, 2020. "Real-Time Validation of Power Flow Control Method for Enhanced Operation of Microgrids," Energies, MDPI, vol. 13(22), pages 1-19, November.
    5. Tayab, Usman Bashir & Roslan, Mohd Azrik Bin & Hwai, Leong Jenn & Kashif, Muhammad, 2017. "A review of droop control techniques for microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 717-727.
    6. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.
    7. Maysam Abbasi & Ehsan Abbasi & Li Li & Ricardo P. Aguilera & Dylan Lu & Fei Wang, 2023. "Review on the Microgrid Concept, Structures, Components, Communication Systems, and Control Methods," Energies, MDPI, vol. 16(1), pages 1-36, January.
    8. Sepideh Radhoush & Maryam Bahramipanah & Hashem Nehrir & Zagros Shahooei, 2022. "A Review on State Estimation Techniques in Active Distribution Networks: Existing Practices and Their Challenges," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    2. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Brigita Žuromskaitė-Nagaj & Wieslaw Wes Grebski, 2024. "The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis," Energies, MDPI, vol. 17(4), pages 1-51, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussain A. Alhaiz & Ahmed S. Alsafran & Ali H. Almarhoon, 2023. "Single-Phase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-28, July.
    2. Andrea Lauri & Tommaso Caldognetto & Davide Biadene & Hossein Abedini & Paolo Mattavelli, 2023. "Per-Phase Power Controller for Smooth Islanded Transitions in Three-Phase Three-Wire Systems," Energies, MDPI, vol. 16(2), pages 1-12, January.
    3. Quynh T.T Tran & Eleonora Riva Sanseverino & Gaetano Zizzo & Maria Luisa Di Silvestre & Tung Lam Nguyen & Quoc-Tuan Tran, 2020. "Real-Time Minimization Power Losses by Driven Primary Regulation in Islanded Microgrids," Energies, MDPI, vol. 13(2), pages 1-17, January.
    4. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
    6. Yu Shi & Yueting Hou & Yue Yu & Zhaoyang Jin & Mohamed A. Mohamed, 2023. "Robust Power System State Estimation Method Based on Generalized M-Estimation of Optimized Parameters Based on Sampling," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    7. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    8. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
    9. Eva Buchta & Mathias Duckheim & Michael Metzger & Paul Stursberg & Stefan Niessen, 2023. "Leveraging Behavioral Correlation in Distribution System State Estimation for the Recognition of Critical System States," Energies, MDPI, vol. 16(20), pages 1-21, October.
    10. Paolo Tenti & Tommaso Caldognetto, 2022. "Generalized Control of the Power Flow in Local Area Energy Networks," Energies, MDPI, vol. 15(4), pages 1-21, February.
    11. Huang, Lei & Sun, Wei & Li, Qiyue & Li, Weitao, 2023. "Distributed real-time economic dispatch for islanded microgrids with dynamic power demand," Applied Energy, Elsevier, vol. 342(C).
    12. Kamil Khan & Ahmad Kamal & Abdul Basit & Tanvir Ahmad & Haider Ali & Anwar Ali, 2019. "Economic Load Dispatch of a Grid-Tied DC Microgrid Using the Interior Search Algorithm," Energies, MDPI, vol. 12(4), pages 1-13, February.
    13. Tayab, Usman Bashir & Lu, Junwei & Yang, Fuwen & AlGarni, Tahani Saad & Kashif, Muhammad, 2021. "Energy management system for microgrids using weighted salp swarm algorithm and hybrid forecasting approach," Renewable Energy, Elsevier, vol. 180(C), pages 467-481.
    14. Alireza Gorjian & Mohsen Eskandari & Mohammad H. Moradi, 2023. "Conservation Voltage Reduction in Modern Power Systems: Applications, Implementation, Quantification, and AI-Assisted Techniques," Energies, MDPI, vol. 16(5), pages 1-36, March.
    15. Maria Carmela Di Piazza, 2021. "Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids," Energies, MDPI, vol. 14(24), pages 1-3, December.
    16. Geovane L. Reis & Danilo I. Brandao & João H. Oliveira & Lucas S. Araujo & Braz J. Cardoso Filho, 2022. "Case Study of Single-Controllable Microgrid: A Practical Implementation," Energies, MDPI, vol. 15(17), pages 1-22, September.
    17. Triet Nguyen-Van, 2021. "A Power Control Method for Hybrid Electrical Accommodation Systems," Energies, MDPI, vol. 14(20), pages 1-12, October.
    18. Yamashita, Daniela Yassuda & Vechiu, Ionel & Gaubert, Jean-Paul, 2020. "A review of hierarchical control for building microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    19. Khalid Javed & Lieven Vandevelde & Frederik De Belie, 2022. "Analysis and Demonstration of Control Scheme for Multiple Operating Modes of Energy Storage Converters to Enhance Power Factor," Mathematics, MDPI, vol. 10(19), pages 1-26, September.
    20. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2320-:d:1083256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.