IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v227y2018icp497-505.html
   My bibliography  Save this article

Techno-economic analysis of photovoltaic battery system configuration and location☆

Author

Listed:
  • Lahnaoui, Amin
  • Stenzel, Peter
  • Linssen, Jochen

Abstract

The techno-economic analysis investigates first the impact of tilt angle and orientation on the production profile of a rooftop solar generator and the related performance of a photovoltaic battery storage system for single family houses at a specific location in Germany. Then, a technical comparison to a different location in Almeria in Spain is performed.

Suggested Citation

  • Lahnaoui, Amin & Stenzel, Peter & Linssen, Jochen, 2018. "Techno-economic analysis of photovoltaic battery system configuration and location☆," Applied Energy, Elsevier, vol. 227(C), pages 497-505.
  • Handle: RePEc:eee:appene:v:227:y:2018:i:c:p:497-505
    DOI: 10.1016/j.apenergy.2017.09.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Graham, Paul W. & Brinsmead, Thomas & Hatfield-Dodds, Steve, 2015. "Australian retail electricity prices: Can we avoid repeating the rising trend of the past?," Energy Policy, Elsevier, vol. 86(C), pages 456-469.
    2. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    3. Merei, Ghada & Moshövel, Janina & Magnor, Dirk & Sauer, Dirk Uwe, 2016. "Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications," Applied Energy, Elsevier, vol. 168(C), pages 171-178.
    4. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    5. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    6. Moshövel, Janina & Kairies, Kai-Philipp & Magnor, Dirk & Leuthold, Matthias & Bost, Mark & Gährs, Swantje & Szczechowicz, Eva & Cramer, Moritz & Sauer, Dirk Uwe, 2015. "Analysis of the maximal possible grid relief from PV-peak-power impacts by using storage systems for increased self-consumption," Applied Energy, Elsevier, vol. 137(C), pages 567-575.
    7. Parra, David & Patel, Martin K., 2016. "Effect of tariffs on the performance and economic benefits of PV-coupled battery systems," Applied Energy, Elsevier, vol. 164(C), pages 175-187.
    8. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
    9. Lorenzi, Guido & Silva, Carlos Augusto Santos, 2016. "Comparing demand response and battery storage to optimize self-consumption in PV systems," Applied Energy, Elsevier, vol. 180(C), pages 524-535.
    10. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "Determination of the optimal tilt angle and orientation for solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 35(11), pages 2468-2475.
    11. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
    12. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aniello, Gianmarco & Shamon, Hawal & Kuckshinrichs, Wilhelm, 2021. "Micro-economic assessment of residential PV and battery systems: The underrated role of financial and fiscal aspects," Applied Energy, Elsevier, vol. 281(C).
    2. Sandipan Patra & Sreedhar Madichetty & Malabika Basu, 2021. "Development of a Smart Energy Community by Coupling Neighbouring Community Microgrids for Enhanced Power Sharing Using Customised Droop Control," Energies, MDPI, vol. 14(17), pages 1-17, August.
    3. Aniello, Gianmarco & Bertsch, Valentin, 2023. "Shaping the energy transition in the residential sector: Regulatory incentives for aligning household and system perspectives," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schram, Wouter L. & Lampropoulos, Ioannis & van Sark, Wilfried G.J.H.M., 2018. "Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential," Applied Energy, Elsevier, vol. 223(C), pages 69-81.
    2. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    3. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    4. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    5. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    6. Oliva H., Sebastian & Passey, Rob & Abdullah, Md Abu, 2019. "A semi-empirical financial assessment of combining residential photovoltaics, energy efficiency and battery storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 206-214.
    7. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    8. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
    9. Koskela, Juha & Rautiainen, Antti & Järventausta, Pertti, 2019. "Using electrical energy storage in residential buildings – Sizing of battery and photovoltaic panels based on electricity cost optimization," Applied Energy, Elsevier, vol. 239(C), pages 1175-1189.
    10. Jessica Thomsen & Christoph Weber, "undated". "How the design of retail prices, network charges, and levies affects profitability and operation of small-scale PV-Battery Storage Systems," EWL Working Papers 1903, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    11. Aniello, Gianmarco & Shamon, Hawal & Kuckshinrichs, Wilhelm, 2021. "Micro-economic assessment of residential PV and battery systems: The underrated role of financial and fiscal aspects," Applied Energy, Elsevier, vol. 281(C).
    12. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.
    13. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Linssen, Jochen & Stenzel, Peter & Fleer, Johannes, 2017. "Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles," Applied Energy, Elsevier, vol. 185(P2), pages 2019-2025.
    15. Holger C. Hesse & Rodrigo Martins & Petr Musilek & Maik Naumann & Cong Nam Truong & Andreas Jossen, 2017. "Economic Optimization of Component Sizing for Residential Battery Storage Systems," Energies, MDPI, vol. 10(7), pages 1-19, June.
    16. Kazhamiaka, Fiodar & Jochem, Patrick & Keshav, Srinivasan & Rosenberg, Catherine, 2017. "On the influence of jurisdiction on the profitability of residential photovoltaic-storage systems: A multi-national case study," Energy Policy, Elsevier, vol. 109(C), pages 428-440.
    17. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    18. Ramirez Camargo, Luis & Nitsch, Felix & Gruber, Katharina & Dorner, Wolfgang, 2018. "Electricity self-sufficiency of single-family houses in Germany and the Czech Republic," Applied Energy, Elsevier, vol. 228(C), pages 902-915.
    19. Angela María Gómez-Restrepo & Juan David González-Ruiz & Sergio Botero Botero, 2024. "Financial Investment Valuation Models for Photovoltaic and Energy Storage Projects: Trends and Challenges," Energies, MDPI, vol. 17(11), pages 1-29, May.
    20. Juha Koskela & Pertti Järventausta, 2023. "Demand Response with Electrical Heating in Detached Houses in Finland and Comparison with BESS for Increasing PV Self-Consumption," Energies, MDPI, vol. 16(1), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:227:y:2018:i:c:p:497-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.