IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i11d10.1007_s10668-021-02054-z.html
   My bibliography  Save this article

Technical and economic assessment of processes for the LNG production in cycles with expander and refrigeration

Author

Listed:
  • Saghi Raeisdanaei

    (Central Tehran Branch, Islamic Azad University)

  • Vahid Pirouzfar

    (Central Tehran Branch, Islamic Azad University)

  • Chia-Hung Su

    (Ming Chi University of Technology)

Abstract

Optimized liquefied natural gas (LNG) process can be helpful for better energy and cost saving for gas transportation and storage. In this study, different layouts of LNG units are examined technically and economically so that with the specific and combined refrigerants, the least amount of energy can be consumed in the LNG unit. Two optimized LNG production processes were selected and compared. In Case 1, the expander is used for preventing energy loss in joule Thomson phenomena, and in Case 2, precooling was performed for better integration of heat. The study used Aspen HYSYS software to simulate the process and Aspen Capital Cost Estimator (Icarus) for economic analysis. According to the economic analysis of the energy and the process of these two cases, Case 2 is better in economic terms and energy consumption. This simulation is for an LNG unit with a capacity of 1000 tons per day. Total costs (including direct and indirect) in Case 1 and 2 are 152 and 130 USD/Tone, respectively. This issue is related to use of the compressors and turbo-expanders in Case 1.

Suggested Citation

  • Saghi Raeisdanaei & Vahid Pirouzfar & Chia-Hung Su, 2022. "Technical and economic assessment of processes for the LNG production in cycles with expander and refrigeration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13407-13425, November.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:11:d:10.1007_s10668-021-02054-z
    DOI: 10.1007/s10668-021-02054-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-02054-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-02054-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Mafi, Mostafa, 2018. "Applying an integrated trigeneration incorporating hybrid energy systems for natural gas liquefaction," Energy, Elsevier, vol. 149(C), pages 848-864.
    2. Mortazavi, Amir & Alabdulkarem, Abdullah & Hwang, Yunho & Radermacher, Reinhard, 2014. "Novel combined cycle configurations for propane pre-cooled mixed refrigerant (APCI) natural gas liquefaction cycle," Applied Energy, Elsevier, vol. 117(C), pages 76-86.
    3. Primabudi, Eko & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process," Energy, Elsevier, vol. 185(C), pages 492-504.
    4. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Hyun Cho, Jae & Lim, Wonsub & Moon, Il, 2011. "Current status and future projections of LNG demand and supplies: A global prospective," Energy Policy, Elsevier, vol. 39(7), pages 4097-4104, July.
    5. Muhammad Yousaf Raza & Muhammad Tauqir Sultan Shah, 2020. "Analysis of coal-related energy consumption in Pakistan: an alternative energy resource to fuel economic development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6149-6170, October.
    6. He, Tianbiao & Ju, Yonglin, 2015. "Optimal synthesis of expansion liquefaction cycle for distributed-scale LNG (liquefied natural gas) plant," Energy, Elsevier, vol. 88(C), pages 268-280.
    7. Thomas, Sydney & Dawe, Richard A, 2003. "Review of ways to transport natural gas energy from countries which do not need the gas for domestic use," Energy, Elsevier, vol. 28(14), pages 1461-1477.
    8. Iskander Tlili, 2015. "Renewable energy in Saudi Arabia: current status and future potentials," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 859-886, August.
    9. Zhang, Jinrui & Meerman, Hans & Benders, René & Faaij, André, 2020. "Technical and economic optimization of expander-based small-scale natural gas liquefaction processes with absorption precooling cycle," Energy, Elsevier, vol. 191(C).
    10. Sheida Abdoli & Farah Habib & Mohammad Babazadeh, 2018. "Making spatial development scenario for south of Bushehr province, Iran, based on strategic foresight," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1293-1309, June.
    11. Yosef Jabareen, 2008. "A New Conceptual Framework for Sustainable Development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(2), pages 179-192, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    2. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
    3. Yin, Liang & Ju, Yonglin, 2020. "Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle," Energy, Elsevier, vol. 205(C).
    4. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    5. Cao, Yan & Mohammadian, Mehrnoush & Pirouzfar, Vahid & Su, Chia-Hung & Khan, Afrasyab, 2021. "Break Even Point analysis of liquefied natural gas process and optimization of its refrigeration cycles with technical and economic considerations," Energy, Elsevier, vol. 237(C).
    6. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    7. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    8. Shazed, Abdur Rahman & Ashraf, Hafsa M. & Katebah, Mary A. & Bouabidi, Zineb & Al-musleh, Easa I., 2021. "Overcoming the energy and environmental issues of LNG plants by using solid oxide fuel cells," Energy, Elsevier, vol. 218(C).
    9. Lin, Wensheng & Xiong, Xiaojun & Gu, Anzhong, 2018. "Optimization and thermodynamic analysis of a cascade PLNG (pressurized liquefied natural gas) process with CO2 cryogenic removal," Energy, Elsevier, vol. 161(C), pages 870-877.
    10. Son, Heechang & Austbø, Bjørn & Gundersen, Truls & Hwang, Jihyun & Lim, Youngsub, 2022. "Techno-economic versus energy optimization of natural gas liquefaction processes with different heat exchanger technologies," Energy, Elsevier, vol. 245(C).
    11. Baccioli, A. & Antonelli, M. & Frigo, S. & Desideri, U. & Pasini, G., 2018. "Small scale bio-LNG plant: Comparison of different biogas upgrading techniques," Applied Energy, Elsevier, vol. 217(C), pages 328-335.
    12. Muhammad Sajid & Farhan Ahmed & Shafique Ahmed & Aadil Panhwar, 2018. "Viability of Liquefied Natural Gas (LNG) in Pakistan," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 146-154.
    13. Makena Coffman & Karen Umemoto, 2010. "The triple-bottom-line: framing of trade-offs in sustainability planning practice," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(5), pages 597-610, October.
    14. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    15. Kang-Min Kim & Gyu-Bo Kim & Byoung-Hwa Lee & Yoon-Ho Bae & Chung-Hwan Jeon, 2021. "CFD Evaluation of Heat Transfer and NOx Emissions When Converting a Tangentially Fired Coal Boiler to Use Methane," Energies, MDPI, vol. 15(1), pages 1-16, December.
    16. Huilian Han & Hui Li, 2020. "Coupling Coordination Evaluation between Population and Land Urbanization in Ha-Chang Urban Agglomeration," Sustainability, MDPI, vol. 12(1), pages 1-23, January.
    17. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    18. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    19. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    20. Nicos A. Scordis & Yoshihiko Suzawa & Astrid Zwick & Lucia Ruckner, 2014. "Principles for Sustainable Insurance: Risk Management and Value," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 17(2), pages 265-276, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:11:d:10.1007_s10668-021-02054-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.