IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v185y2019icp492-504.html
   My bibliography  Save this article

Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process

Author

Listed:
  • Primabudi, Eko
  • Morosuk, Tatiana
  • Tsatsaronis, George

Abstract

Multi-Objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process is performed with two objective functions: (a) maximizing the exergy efficiency and (b) minimizing the total cost of the product. The process simulation is developed using Aspen Plus, while the feasible solutions are produced using non-dominated sorting genetic algorithm II (NSGA-II). The results from exergy-based analysis revealed that when the exergetic efficiency is maximized, the total cost of product has increased from 5047$/h to 52776 $/h, with 71% of the investment costs come from precooling heat exchangers and main cryogenic heat exchangers. On the contrary, when the total cost of product is minimized, the total investment cost is reduced by 18% at the expense of exergetic efficiency. At the lowest cost of product, the total exergy destruction has increased to 111.4 MW or 38% higher compared with the case of maximization of exergetic efficiency. The optimization shows the range of Pareto feasible solutions are between 0.557 and 0.613 for exergetic efficiency and between 45600 and 52776 $/h for the total cost of product. This study demonstrates the approach to solve a multi-objective problem and to find Pareto front for an LNG process without imposing any weighted preferences to the objective functions.

Suggested Citation

  • Primabudi, Eko & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process," Energy, Elsevier, vol. 185(C), pages 492-504.
  • Handle: RePEc:eee:energy:v:185:y:2019:i:c:p:492-504
    DOI: 10.1016/j.energy.2019.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219313623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ligang & Yang, Yongping & Dong, Changqing & Morosuk, Tatiana & Tsatsaronis, George, 2014. "Multi-objective optimization of coal-fired power plants using differential evolution," Applied Energy, Elsevier, vol. 115(C), pages 254-264.
    2. Morosuk, Tatiana & Tsatsaronis, George, 2019. "Splitting physical exergy: Theory and application," Energy, Elsevier, vol. 167(C), pages 698-707.
    3. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    4. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katebah, Mary A. & Hussein, Mohamed M. & Al-musleh, Easa I. & Almomani, Fares, 2023. "A systematic optimization approach of an actual LNG plant: Power savings and enhanced process economy," Energy, Elsevier, vol. 269(C).
    2. Jinxi, Wang & Xue, Bai & Ying, Liang & Aimin, Wang & Cuiying, Lu & Yajun, Ma & Chengmeng, Chen & Heydarian, Dariush, 2023. "Simulation and technical, economic, and environmental analyses of natural gas liquefaction cycle using different configurations," Energy, Elsevier, vol. 278(C).
    3. Shazed, Abdur Rahman & Ashraf, Hafsa M. & Katebah, Mary A. & Bouabidi, Zineb & Al-musleh, Easa I., 2021. "Overcoming the energy and environmental issues of LNG plants by using solid oxide fuel cells," Energy, Elsevier, vol. 218(C).
    4. Li, Xiaodong & Jinxi, Wang, 2023. "A novel process for the simultaneous production of methanol, oxygen, and electricity using a PEM electrolyzer and agricultural-based landfill gas-fed oxyfuel combustion power plant," Energy, Elsevier, vol. 284(C).
    5. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2023. "Multi-objective simulation–optimization via kriging surrogate models applied to natural gas liquefaction process design," Energy, Elsevier, vol. 262(PB).
    6. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    7. Sun, Shirui & Chun, Wei & Yang, Ao & Shen, Weifeng & Cui, Peizhe & Ren, Jingzheng, 2020. "The separation of ternary azeotropic mixture: Thermodynamic insight and improved multi-objective optimization," Energy, Elsevier, vol. 206(C).
    8. Zhang, Qiang & Zhang, Ningqi & Zhu, Shengbo & Heydarian, Dariush, 2023. "Thermodynamic simulation and optimization of natural gas liquefaction cycle based on the common structure of organic rankine cycle," Energy, Elsevier, vol. 264(C).
    9. Saghi Raeisdanaei & Vahid Pirouzfar & Chia-Hung Su, 2022. "Technical and economic assessment of processes for the LNG production in cycles with expander and refrigeration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13407-13425, November.
    10. Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahlouli, K. & Khoshbakhti Saray, R. & Sarabchi, N., 2015. "Parametric investigation and thermo-economic multi-objective optimization of an ammonia–water power/cooling cycle coupled with an HCCI (homogeneous charge compression ignition) engine," Energy, Elsevier, vol. 86(C), pages 672-684.
    2. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    3. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    4. Zhao, Liang & Zhang, Jiulei & Wang, Xiu & Feng, Junsheng & Dong, Hui & Kong, Xiangwei, 2020. "Dynamic exergy analysis of a novel LNG cold energy utilization system combined with cold, heat and power," Energy, Elsevier, vol. 212(C).
    5. Pirmohamadi, Alireza & Ghazi, Mehrangiz & Nikian, Mohammad, 2019. "Optimal design of cogeneration systems in total site using exergy approach," Energy, Elsevier, vol. 166(C), pages 1291-1302.
    6. Agudelo, Andrés & Valero, Antonio & Torres, César, 2012. "Allocation of waste cost in thermoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 634-643.
    7. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    8. Hofmann, Mathias & Tsatsaronis, George, 2018. "Comparative exergoeconomic assessment of coal-fired power plants – Binary Rankine cycle versus conventional steam cycle," Energy, Elsevier, vol. 142(C), pages 168-179.
    9. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    10. Cassetti, G. & Rocco, M.V. & Colombo, E., 2014. "Exergy based methods for economic and risk design optimization of energy systems: Application to a gas turbine," Energy, Elsevier, vol. 74(C), pages 269-279.
    11. Ligang Wang & Yongping Yang & Changqing Dong & Zhiping Yang & Gang Xu & Lingnan Wu, 2012. "Exergoeconomic Evaluation of a Modern Ultra-Supercritical Power Plant," Energies, MDPI, vol. 5(9), pages 1-17, September.
    12. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    13. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    14. Anvari, Simin & Khoshbakhti Saray, Rahim & Bahlouli, Keyvan, 2015. "Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production," Energy, Elsevier, vol. 91(C), pages 925-939.
    15. Lara, Yolanda & Petrakopoulou, Fontina & Morosuk, Tatiana & Boyano, Alicia & Tsatsaronis, George, 2017. "An exergy-based study on the relationship between costs and environmental impacts in power plants," Energy, Elsevier, vol. 138(C), pages 920-928.
    16. Abdolalipouradl, Mehran & Mohammadkhani, Farzad & Khalilarya, Shahram, 2020. "A comparative analysis of novel combined flash-binary cycles for Sabalan geothermal wells: Thermodynamic and exergoeconomic viewpoints," Energy, Elsevier, vol. 209(C).
    17. Chandrakant Nikam, Keval & Jathar, Laxmikant & Shelare, Sagar Dnyaneshwar & Shahapurkar, Kiran & Dambhare, Sunil & Soudagar, Manzoore Elahi M. & Mubarak, Nabisab Mujawar & Ahamad, Tansir & Kalam, M.A., 2023. "Parametric analysis and optimization of 660 MW supercritical power plant," Energy, Elsevier, vol. 280(C).
    18. Mohammadkhani, Farzad & Ranjbar, Faramarz & Yari, Mortaza, 2015. "A comparative study on the ammonia–water based bottoming power cycles: The exergoeconomic viewpoint," Energy, Elsevier, vol. 87(C), pages 425-434.
    19. Olusegun David Samuel & Peter A. Aigba & Thien Khanh Tran & H. Fayaz & Carlo Pastore & Oguzhan Der & Ali Erçetin & Christopher C. Enweremadu & Ahmad Mustafa, 2023. "Comparison of the Techno-Economic and Environmental Assessment of Hydrodynamic Cavitation and Mechanical Stirring Reactors for the Production of Sustainable Hevea brasiliensis Ethyl Ester," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    20. Seyed Mohammad Seyed Mahmoudi & Ramin Ghiami Sardroud & Mohsen Sadeghi & Marc A. Rosen, 2022. "Integration of Supercritical CO 2 Recompression Brayton Cycle with Organic Rankine/Flash and Kalina Cycles: Thermoeconomic Comparison," Sustainability, MDPI, vol. 14(14), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:185:y:2019:i:c:p:492-504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.