IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v212y2020ics0360544220317576.html
   My bibliography  Save this article

Dynamic exergy analysis of a novel LNG cold energy utilization system combined with cold, heat and power

Author

Listed:
  • Zhao, Liang
  • Zhang, Jiulei
  • Wang, Xiu
  • Feng, Junsheng
  • Dong, Hui
  • Kong, Xiangwei

Abstract

Plenty of cold energy is released through the regasification process of liquified natural gas (LNG). Thus, the LNG cold energy utilization has become a hot issue of research in both academic and engineering area. In this study, a novel LNG cold energy utilization system integrating a gas turbine, four Rankine cycles and a NG directly expander is proposed and analyzed by the dynamic exergy method. Moreover, LNG regasification pressure and air inlet temperature are selected for the parameter sensitive analysis. At last, a typical hotel located in South China is chosen as the study case. The results show that comparing with the traditional CCHP system, the novel system has higher Power/Cold ratio and Heat/Cold ratio which can reach to 5.55 and 3.65, respectively. Besides, the system exergy efficiency can reach to 48.97% at specific conditions. Furthermore, it has a variation section in where the system exergy efficiency decreases sharply due to the influence of the regasification pressure of LNG. Moreover, the proposed system has higher exergy efficiency when it is working at lower atmospheric temperature.

Suggested Citation

  • Zhao, Liang & Zhang, Jiulei & Wang, Xiu & Feng, Junsheng & Dong, Hui & Kong, Xiangwei, 2020. "Dynamic exergy analysis of a novel LNG cold energy utilization system combined with cold, heat and power," Energy, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220317576
    DOI: 10.1016/j.energy.2020.118649
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118649?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xiaofeng & Jiang, Hui & Wang, Huina & Zhao, Juanjuan & Qiu, Quanyi & Tapper, Nigel & Hua, Lizhong, 2013. "Remotely sensed thermal pollution and its relationship with energy consumption and industry in a rapidly urbanizing Chinese city," Energy Policy, Elsevier, vol. 57(C), pages 398-406.
    2. Yu, Haoshui & Kim, Donghoi & Gundersen, Truls, 2019. "A study of working fluids for Organic Rankine Cycles (ORCs) operating across and below ambient temperature to utilize Liquefied Natural Gas (LNG) cold energy," Energy, Elsevier, vol. 167(C), pages 730-739.
    3. Matjanov, Erkinjon, 2020. "Gas turbine efficiency enhancement using absorption chiller. Case study for Tashkent CHP," Energy, Elsevier, vol. 192(C).
    4. Ma, Guoguang & Lu, Hongfang & Cui, Guobiao & Huang, Kun, 2018. "Multi-stage Rankine cycle (MSRC) model for LNG cold-energy power generation system," Energy, Elsevier, vol. 165(PB), pages 673-688.
    5. Chahartaghi, Mahmood & Sheykhi, Mohammad, 2019. "Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases," Energy, Elsevier, vol. 174(C), pages 1251-1266.
    6. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    7. Morosuk, Tatiana & Tsatsaronis, George, 2019. "Splitting physical exergy: Theory and application," Energy, Elsevier, vol. 167(C), pages 698-707.
    8. Dong, Hui & Zhao, Liang & Zhang, Songyuan & Wang, Aihua & Cai, Jiuju, 2013. "Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle," Energy, Elsevier, vol. 63(C), pages 10-18.
    9. Bender, Daniel, 2017. "Integration of exergy analysis into model-based design and evaluation of aircraft environmental control systems," Energy, Elsevier, vol. 137(C), pages 739-751.
    10. Ezzat, M.F. & Dincer, I., 2020. "Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems," Energy, Elsevier, vol. 194(C).
    11. Badami, Marco & Bruno, Juan Carlos & Coronas, Alberto & Fambri, Gabriele, 2018. "Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification," Energy, Elsevier, vol. 159(C), pages 373-384.
    12. Liu, Yang & Han, Jitian & You, Huailiang, 2020. "Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture," Energy, Elsevier, vol. 190(C).
    13. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    14. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    15. Wang, Xiu & Zhao, Liang & Zhang, Lihui & Zhang, Menghui & Dong, Hui, 2019. "A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 187(C).
    16. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Coronas, Alberto, 2019. "Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 183(C), pages 448-461.
    17. Huang, Zhifeng & Yang, Cheng & Yang, Haixia & Ma, Xiaoqian, 2018. "Off-design heating/power flexibility for steam injected gas turbine based CCHP considering variable geometry operation," Energy, Elsevier, vol. 165(PA), pages 1048-1060.
    18. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Nakayama, Masayuki & Coronas, Alberto, 2019. "Fluids selection and performance analysis of a polygeneration plant with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 176(C), pages 1020-1036.
    19. La Rocca, Vincenzo, 2011. "Cold recovery during regasification of LNG part two: Applications in an Agro Food Industry and a Hypermarket," Energy, Elsevier, vol. 36(8), pages 4897-4908.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Zhenhua & Pan, Zhen & Ma, Guiyang & Yu, Jingxian & Shang, Liyan & Zhang, Zhien, 2023. "Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 269(C).
    2. Tang, Changlong & Hu, Fan & Zhou, Xiaoguang & Li, Yajun, 2022. "Optimization methods for flexibility and stability related to the operation of LNG receiving terminals," Energy, Elsevier, vol. 250(C).
    3. Tian, Zhen & Qi, Zhixin & Gan, Wanlong & Tian, Molin & Gao, Wenzhong, 2022. "A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
    2. Huang, Z.F. & Soh, K.Y. & Wan, Y.D. & Islam, M.R. & Chua, K.J., 2022. "Assessment of an intermediate working medium and cold energy storage (IWM-CES) system for LNG cold energy utilization under real regasification case," Energy, Elsevier, vol. 253(C).
    3. Ouyang, Tiancheng & Tan, Jiaqi & Wu, Wencong & Xie, Shutao & Li, Difan, 2022. "Energy, exergy and economic benefits deriving from LNG-fired power plant: Cold energy power generation combined with carbon dioxide capture," Renewable Energy, Elsevier, vol. 195(C), pages 214-229.
    4. Tri Tjahjono & Mehdi Ali Ehyaei & Abolfazl Ahmadi & Siamak Hoseinzadeh & Saim Memon, 2021. "Thermo-Economic Analysis on Integrated CO 2 , Organic Rankine Cycles, and NaClO Plant Using Liquefied Natural Gas," Energies, MDPI, vol. 14(10), pages 1-24, May.
    5. Huang, Z.F. & Wan, Y.D. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2022. "Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates," Applied Energy, Elsevier, vol. 310(C).
    6. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    7. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Coronas, Alberto, 2019. "Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 183(C), pages 448-461.
    8. Liu, Yang & Han, Jitian & You, Huailiang, 2020. "Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture," Energy, Elsevier, vol. 190(C).
    9. Chen, Kang & Han, Zihao & Fan, Gang & Zhang, Yicen & Yu, Haibin & Dai, Yiping, 2023. "Optimum design point exploration and performance analysis of a novel CO2 power generation system for LNG cold energy recovery: Considering the temperature fluctuation of heat source," Energy, Elsevier, vol. 275(C).
    10. Fang, Zhenhua & Pan, Zhen & Ma, Guiyang & Yu, Jingxian & Shang, Liyan & Zhang, Zhien, 2023. "Exergoeconomic, exergoenvironmental analysis and multi-objective optimization of a novel combined cooling, heating and power system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 269(C).
    11. Zheng, Siyang & Li, Chenghao & Zeng, Zhiyong, 2022. "Thermo-economic analysis, working fluids selection, and cost projection of a precooler-integrated dual-stage combined cycle (PIDSCC) system utilizing cold exergy of liquefied natural gas," Energy, Elsevier, vol. 238(PC).
    12. Tian, Zhen & Qi, Zhixin & Gan, Wanlong & Tian, Molin & Gao, Wenzhong, 2022. "A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations," Energy, Elsevier, vol. 257(C).
    13. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Nakayama, Masayuki & Coronas, Alberto, 2019. "Fluids selection and performance analysis of a polygeneration plant with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 176(C), pages 1020-1036.
    14. Choi, Hong Wone & Na, Sun-Ik & Hong, Sung Bin & Chung, Yoong & Kim, Dong Kyu & Kim, Min Soo, 2021. "Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size," Energy, Elsevier, vol. 217(C).
    15. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Zhu, Yu & Li, Jiamei & Ge, Minghui & Gu, Hai & Wang, Shixue, 2023. "Numerical and experimental study of a non-frosting thermoelectric generation device for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 352(C).
    17. Primabudi, Eko & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process," Energy, Elsevier, vol. 185(C), pages 492-504.
    18. Aghaei, Ali Tavakkol & Saray, Rahim Khoshbakhti, 2021. "Optimization of a combined cooling, heating, and power (CCHP) system with a gas turbine prime mover: A case study in the dairy industry," Energy, Elsevier, vol. 229(C).
    19. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    20. Joy, Jubil & Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2022. "Size reduction and enhanced power generation in ORC by vaporizing LNG at high supercritical pressure irrespective of delivery pressure," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220317576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.