IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v325y2025ics0360544225017700.html
   My bibliography  Save this article

Dynamic operation characteristics of a combined cooling and power system

Author

Listed:
  • Li, Deming
  • Mao, Changjun
  • Bai, Jian
  • Zhang, Chengbin
  • Chen, Yongping

Abstract

Regasification rate fluctuations of liquefied natural gas (LNG) cause a mismatch between the energy output of LNG and downstream user demand. To address this, the thermal energy storage via packed bed is coupled into the combined cooling and power system using LNG cold energy. Following this, the optimization design of this system is carried out by using a genetic algorithm, and an unsteady-state model of LNG regasification accompanied with cooling and power generation is developed to study the dynamic operation characteristics under fluctuating LNG demand. The results indicate that the introduction of thermal energy storage via packed bed effectively mitigates the thermodynamic performance fluctuations caused by the varied regasification rate. Under a typical LNG regasification rate curve, the power output of system with no packed bed fluctuates with varied regasification rate, with a peak-to-valley ratio reaching 33. In contrast, the power output of the system with a packed bed remains steady at the design value (0.0245 kWh/kgLNG) during the day period of fluctuating LNG demand, which proves the superiority of the packed-bed thermal energy storage for the LNG cold energy utilization. This study provides a theoretical framework to support the application of the packed bed-LNG cold energy utilization system.

Suggested Citation

  • Li, Deming & Mao, Changjun & Bai, Jian & Zhang, Chengbin & Chen, Yongping, 2025. "Dynamic operation characteristics of a combined cooling and power system," Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017700
    DOI: 10.1016/j.energy.2025.136128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225017700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Yu, Haoshui & Kim, Donghoi & Gundersen, Truls, 2019. "A study of working fluids for Organic Rankine Cycles (ORCs) operating across and below ambient temperature to utilize Liquefied Natural Gas (LNG) cold energy," Energy, Elsevier, vol. 167(C), pages 730-739.
    3. Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
    4. He, Tianbiao & Ma, Jie & Mao, Ning & Qi, Meng & Jin, Tao, 2024. "Exploring the stability and dynamic responses of dual-stage series ORC using LNG cold energy for sustainable power generation," Applied Energy, Elsevier, vol. 372(C).
    5. García, Ramón Ferreiro & Carril, Jose Carbia & Gomez, Javier Romero & Gomez, Manuel Romero, 2016. "Combined cascaded Rankine and direct expander based power units using LNG (liquefied natural gas) cold as heat sink in LNG regasification," Energy, Elsevier, vol. 105(C), pages 16-24.
    6. Ma, Guoguang & Lu, Hongfang & Cui, Guobiao & Huang, Kun, 2018. "Multi-stage Rankine cycle (MSRC) model for LNG cold-energy power generation system," Energy, Elsevier, vol. 165(PB), pages 673-688.
    7. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    8. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
    10. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Tafone, Alessio & Borri, Emiliano & Cabeza, Luisa F. & Romagnoli, Alessandro, 2021. "Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) – Numerical dynamic modelling and experimental study of a packed bed unit," Applied Energy, Elsevier, vol. 301(C).
    12. Huang, Z.F. & Wan, Y.D. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2022. "Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates," Applied Energy, Elsevier, vol. 310(C).
    13. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    14. Ding, Xingqi & Duan, Liqiang & Li, Da & Ji, Shuaiyu & Yang, Libo & Zheng, Nan & Zhou, Yufei, 2024. "Dynamic characteristics of a novel liquid air energy storage system coupled with solar heat and waste heat recovery," Renewable Energy, Elsevier, vol. 221(C).
    15. Li, Deming & Deng, Zilong & Zhang, Chengbin, 2024. "Thermodynamic process control of compression-assisted absorption refrigeration using ocean thermal energy," Renewable Energy, Elsevier, vol. 222(C).
    16. Ouyang, Tiancheng & Pan, Mingming & Tan, Xianlin & Li, Lulu & Huang, Youbin & Mo, Chunlan, 2024. "Power prediction and packed bed heat storage control for marine diesel engine waste heat recovery," Applied Energy, Elsevier, vol. 357(C).
    17. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
    18. Mehrpooya, Mehdi & Moftakhari Sharifzadeh, Mohammad Mehdi & Rosen, Marc A., 2015. "Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization," Energy, Elsevier, vol. 90(P2), pages 2047-2069.
    19. Lee, Inkyu & Park, Jinwoo & Moon, Il, 2017. "Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: Cold and power integration," Energy, Elsevier, vol. 140(P1), pages 106-115.
    20. Liu, Jingyuan & Zhou, Tian & Yang, Sheng, 2024. "Advanced exergy and exergoeconomic analysis of a multi-stage Rankine cycle system combined with hydrate energy storage recovering LNG cold energy," Energy, Elsevier, vol. 288(C).
    21. Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
    22. Li, Deming & Fan, Chengcheng & Zhang, Chengbin & Chen, Yongping, 2022. "Control strategy of load following for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 193(C), pages 595-607.
    23. O'Callaghan, O. & Donnellan, P., 2021. "Liquid air energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    24. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    25. Lee, Inkyu & You, Fengqi, 2019. "Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy," Applied Energy, Elsevier, vol. 242(C), pages 168-180.
    26. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    27. Huang, Z.F. & Soh, K.Y. & Wan, Y.D. & Islam, M.R. & Chua, K.J., 2022. "Assessment of an intermediate working medium and cold energy storage (IWM-CES) system for LNG cold energy utilization under real regasification case," Energy, Elsevier, vol. 253(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
    3. Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
    4. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    5. Ding, Xingqi & Duan, Liqiang & Zheng, Nan & Desideri, Umberto & Zhou, Yufei & Wang, Qiushi & Wang, Yuanhui & Jiao, Weijia, 2025. "A systematic review on liquid air energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    6. He, Tianbiao & Lv, Hongyu & Shao, Zixian & Zhang, Jibao & Xing, Xialian & Ma, Huigang, 2020. "Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling," Applied Energy, Elsevier, vol. 277(C).
    7. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    8. Yehia, Fatma & Al-Haimi, Akram Ali Nasser Mansoor & Byun, Yuree & Kim, Junseok & Yun, Yesom & Lee, Gahyeon & Yu, Seoyeon & Yang, Chao & Liu, Lihua & Qyyum, Muhammad Abdul & Hwang, Jihyun, 2024. "Integration of the single-effect mixed refrigerant cycle with liquified air energy storage and cold energy of LNG regasification: Energy, exergy, and efficiency prospectives," Energy, Elsevier, vol. 306(C).
    9. Chen, Kang & Han, Zihao & Fan, Gang & Zhang, Yicen & Yu, Haibin & Dai, Yiping, 2023. "Optimum design point exploration and performance analysis of a novel CO2 power generation system for LNG cold energy recovery: Considering the temperature fluctuation of heat source," Energy, Elsevier, vol. 275(C).
    10. Park, Jinwoo & Qi, Meng & Kim, Jeongdong & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2020. "Exergoeconomic optimization of liquid air production by use of liquefied natural gas cold energy," Energy, Elsevier, vol. 207(C).
    11. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    12. Gandhi, Akhilesh & Zantye, Manali S. & Faruque Hasan, M.M., 2022. "Cryogenic energy storage: Standalone design, rigorous optimization and techno-economic analysis," Applied Energy, Elsevier, vol. 322(C).
    13. Zhang, Jinya & Wang, Chenchen, 2025. "Thermodynamic and economic analysis of LNG-LAES and LNG-LCES systems: A comparative study," Energy, Elsevier, vol. 324(C).
    14. Mun, Haneul & Kim, Yeonghyun & Park, Jinwoo & Lee, Inkyu, 2024. "Power generation system utilizing cold energy from liquid hydrogen: Integration with a liquid air storage system for peak load shaving," Energy, Elsevier, vol. 306(C).
    15. Daniarta, Sindu & Błasiak, Przemysław & Kolasiński, Piotr & Imre, Attila R., 2024. "Sustainability by means of cold energy utilisation-to-power conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    16. He, Tianbiao & Zhang, Jibao & Mao, Ning & Linga, Praveen, 2021. "Organic Rankine cycle integrated with hydrate-based desalination for a sustainable energy–water nexus system," Applied Energy, Elsevier, vol. 291(C).
    17. Kim, Yeonghyun & Qi, Meng & Cho, Jaehyun & Lee, Inkyu & Park, Jinwoo & Moon, Il, 2023. "Process design and analysis for combined hydrogen regasification process and liquid air energy storage," Energy, Elsevier, vol. 283(C).
    18. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    19. Li, Ran & Tang, Feiran & Pan, Jie & Cao, Qinghan & Hu, Tinglong & Wang, Ke, 2025. "Energy integration of LNG cold energy power generation and liquefied air energy storage: Process design, optimization and analysis," Energy, Elsevier, vol. 321(C).
    20. Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:325:y:2025:i:c:s0360544225017700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.